

Consulting Engineers and Scientists

3 July 2007

1870 Ogden Drive Burlingame, CA 94010 (650) 292-9100 Fax (650) 552-9012

Mr. David Bacharowski California Regional Water Quality Control Board Los Angeles Region 320 West 4th Street, Suite 200 Los Angeles, CA 90013

Subject:

Results of Groundwater Sampling for Total Chromium,

Hexavalent Chromium and 1,4-Dioxane 13500 Paxton Street, Pacoima, California

(EKI A20034.03)

Dear Mr. Bacharowski:

This report summarizes results of grab groundwater sample analyses recently completed for samples collected at 13500 Paxton Street, in Pacoima, California ("Site") for total chromium, hexavalent chromium, and 1,4-dioxane. Second quarter 2007 groundwater monitoring data for these compounds is also presented herein to provide a complete data set of current Site conditions for these compounds. Complete quarterly monitoring data will be presented in the forthcoming quarterly report due in July 2007. The current grab groundwater investigation was proposed in EKI's Work Plan for Additional Groundwater Investigation ("Work Plan"), dated 6 March 2007 and approved with conditions by the California Regional Water Quality Control Board, Los Angeles Region ("RWQCB") in a letter dated 30 March 2007.

This report provides the sampling results for twelve of fourteen planned temporary wells. The locations for the remaining two planned temporary wells, which will be located near the intersection of Sutter Avenue and Louvre Street, are proposed herein.

FIELD INVESTIGATION

The field investigation consisted of the installation and sampling of groundwater from twelve temporary wells (PPGW-1 through PPGW-12). Soil boreholes were drilled using hollow stem auger equipment by Test America Drilling Corporation of Anaheim. California to a minimum depth of 10 feet below the observed water table. Temporary PVC casing and approximately 15-feet of 0.02-inch slotted PVC well screen were placed in the borehole with the well screen extending upward across the water table. Filter pack consisting of #3 sand was then emplaced from the bottom of the well screen to approximately six inches above the screen interval. To allow subsurface conditions to stabilize, development and sampling of the temporary well was performed a minimum of 48 hours following temporary well installation. To development the temporary wells, a positive air displacement pump was installed in the temporary well and a minimum of 50 gallons (i.e., approximately 25 to 55 well casing volumes) of water was purged at a rate

Mr. David Bacharowski, RWQCB 3 July 2007 Page 2 of 6

of approximately one to two gallons per minute ("gpm"). The pump intake depth was adjusted during pumping to remove water from throughout the submerged well screen length to remove water disturbed by drilling activities. The temporary wells were sampled using a bladder pump and flow rate of less than 500 milliliters per minute in accordance with low flow groundwater sampling procedures. Well development and sampling activities were conducted by Blaine Tech Services, Inc. of Carson, California. Borehole logs are presented in Attachment A. Field methods and procedures for collection of the grab groundwater sampling were consistent with the methods and procedures described in the Work Plan. Well development and purging and sampling forms are provided in Attachment B.

In addition to the planned groundwater sampling described in the Work Plan as approved, two temporary wells (Grab-1 and Grab-2) were installed in January 2007 and sampled to assist with determination of the preferred sampling method for collecting representative groundwater samples from temporary wells. The two temporary wells were installed adjacent to existing wells MW-6 (adjacent to Grab-1) and PMW-38 (adjacent to Grab-2). Prior to development and sampling, wells were allowed to stabilize for 24 hours. Wells were developed using a positive air displacement pump. Samples from these locations were collected using a Grunfos rotary turbine pump with low-flow sampling technique, and using a bailer. Hexavalent chromium results for locations Grab-1 and Grab-2 were 0.57 micrograms per liter ("ug/L") and 840 ug/L, respectively, using the low-flow sampling method; and <0.20 ug/L and 750 ug/L, respectively, using a bailer. The hexavalent chromium results for groundwater samples from wells MW-6 and PMW-38, which were collected using the low-flow sampling method, were 16 ug/L and 1,400 ug/L, The low-flow sampling method was selected for this investigation. respectively. Analytical laboratory results for the Grab-1 and Grab-2 are included in Attachment C, but are not presented in Table 1 or shown on Figure 1.

Grab groundwater samples collected in April 2007 were analyzed by Calscience Environmental Laboratories, Inc. ("Calscience") of Garden Grove, California, for the following:

- Chromium using EPA Method 200.8,
- Hexavalent chromium using EPA Method 218.6, and
- 1,4-dioxane using EPA Method 8270C (M) with isotope dilution.

A split groundwater sample was collected at each groundwater location for potential analysis of 1,4-dioxane. Select split samples were submitted to K-PRIME, INC. ("K-Prime") in Santa Rosa, California for confirmation of 1,4-dioxane results. K-Prime analyzed 1,4-dioxane using EPA Method 8270C (M) without isotope dilution. In addition, as requested by the RWQCB, samples collected from locations PPGW-1, PPGW-7, and PPGW-11 were analyzed for volatile organic compounds ("VOCs"). VOC analytical results for grab groundwater analyses were presented in a separate report with

Mr. David Bacharowski, RWQCB 3 July 2007 Page 3 of 6

other VOC data¹. Analytical laboratory reports for grab groundwater sampling summarized herein are provided in Attachment C.

Results for samples collected from permanent Site monitoring wells and analyzed for total chromium, hexavalent chromium, and 1,4-dioxane for the second quarter monitoring event conducted in April 2007 are also presented herein. Analytical laboratory reports for quarterly monitoring data will be included in the forthcoming routine quarterly monitoring report.

RESULTS OF GROUNDWATER SAMPLING FOR TOTAL CHROMIUM, HEXAVALENT CHROMIUM AND 1,4-DIOXANE

Grab groundwater sampling locations and existing monitoring well locations are shown on Figures 1 and 2. The results of groundwater sampling are discussed below.

Hexavalent Chromium and Total Chromium Results

Hexavalent chromium concentrations detected in groundwater samples are shown on Figure 1 and included in Table 1. Hexavalent chromium was detected in 7 of the 12 grab groundwater locations at a concentration above 50 ug/L, with only 2 of the locations exceeding a concentration of 100 ug/L (770 ug/L at PPGW-4 and 2,100 ug/L at PPGW-1). Concentrations of hexavalent chromium above 100 ug/L were detected in 2 of the 11 groundwater monitoring well locations sampled (PMW-38 at 1,500 ug/L and PMW-13 at 150 ug/L); samples collected from the 9 other groundwater monitoring well locations were below 10 ug/L or had none detected (<2 ug/L). Total chromium results are similar to the hexavalent chromium results indicating that the majority of chromium detected in groundwater is of the hexavalent form. Results of the groundwater sampling conducted in April 2007 indicate a narrow plume of elevated hexavalent chromium concentrations in groundwater in the central portion of the Site.

Field quality control samples collected and analyzed included filter blanks and an equipment rinseate blank. Results of chemical analyses of field quality control samples are included in Table 1. Neither total chromium nor hexavalent chromium was detected in the equipment rinseate blank. Of the two filter blanks analyzed for total chromium; one did not have detectable total chromium and one detected total chromium at 3.4 ug/L. Potential sources of the detected total chromium concentration could be the filter, sample tubing, bottle, or acid preservative.

¹ EKI, 2007. Results of Soil and Grab Groundwater Sampling for Volatile Organic Compounds, 13500 Paxton Street, Pacoima, California, 7 June.

Mr. David Bacharowski, RWQCB 3 July 2007 Page 4 of 6

1,4-Dioxane Results

1,4-Dioxane concentrations for grab groundwater samples are shown on Figure 2 and included in Table 1.

To assess the potential for variability of laboratory analytical results, split groundwater samples were collected from all the permanent and temporary wells and one set of samples was sent to Calscience and the other to K-Prime. Calscience analyzed all the groundwater samples for 1,4-dioxane using EPA Method 8270C (M) with isotope dilution. K-Prime analyzed only samples that had detectable 1.4-dioxane based on the results of analysis by Calscience. The samples analyzed by K-Prime were analyzed for 1,4-dioxane using EPA Method 8270C (M) without isotope dilution. All the analyses were completed within the established hold time for 1,4-diocxane in groundwater samples.

Results of the split sampling indicate that the concentrations of 1,4-dioxane reported by the two laboratories vary significantly, by a factor ranging from approximately 2.5 to 5.6 times. The results from Calscience were consistently higher. The difference in analytical method may explain part of the difference. However, both labs analyzed the samples in accordance with US EPA Method 8270C (M) analytical protocol and there were no quality assurance/quality control issues with laboratory method blanks, control samples, or surrogates.

The maximum concentration of 1,4-dioxane detected by both labs was in the groundwater sample from well MW-5. The Calscience analysis of the sample from MW-5 had 1,4-dioxane at a concentration of 1,300 ug/L and K-Prime's analysis detected 332 ug/L in the split sample.

As illustrated on Figure 2, both data sets indicate an area of higher 1,4-dioxane concentrations in groundwater in the central part of the Site (see Figure 2). The results of this investigation for 1,4-dioxane in groundwater indicate the need for additional monitoring including the installation of additional wells and continued split sampling as a check on concentrations, as discussed below.

PROPOSED ADDITIONAL MEASURES

Proposed Locations for Wells in Sutter Avenue to Complete Current Investigation

As requested by the RWQCB in their approval letter, two additional sampling locations (PPGW-13 and PPGW-14) are planned for Sutter Avenue (see Figure 5) near its intersection with Louvre Street. Due to overhead and underground utility constraints near the intersection of Sutter Avenue with Louvre Street, the area in which wells can be constructed is limited (see Figure 3). Because these locations may need to be monitored

Mr. David Bacharowski, RWQCB 3 July 2007 Page 5 of 6

in the future, we propose to install permanent monitoring wells. The wells will be screened across the groundwater table and sampled for total chromium, hexavalent chromium, volatile organic compounds, and 1,4-dioxane. The wells will be installed in accordance with methods and procedures described in the Work Plan and the *Saturated Zone Work Plan*². The wells will be installed following receipt of RWQCB approval of proposed locations and issuance of a drilling permit and City encroachment permit.

Also, as required by the RWQCB in its 30 March 2007 letter, EKI has requested permission from Soco West, Inc. to be allowed to collect a split sample of groundwater from Soco West, Inc. well MW-16 located in Sutter Avenue. If permission is received in time, we propose to collect this sample during the third quarter 2007 sampling event, which is currently planned for early July 2007.

Following receipt of sample results from the planned groundwater sampling locations in Sutter Avenue, analytical results will be transmitted to the RWQCB.

Work Plan for Remediation of Chromium in Groundwater

Upon completion of the additional sampling in Sutter Street described above, we propose to proceed with preparation of a plan for remediation of hexavalent chromium in groundwater on the Site.

Proposed Additional Investigation for 1,4-Dioxane in Groundwater

To better define the extent of 1,4-dioxane in groundwater, including impacts to groundwater under the Site from the upgradient Soco West, Inc. property, and to further assess the variability of 1,4-dioxane concentrations in groundwater, we propose the following investigation:

- ° Complete the additional well installation and groundwater sampling proposed in Sutter Street, which will include analysis of samples for 1,4-dioxane, as described above.
- ^o Collect a groundwater sample from upgradient Well-A2 (i.e., Soco West, Inc., well PF-2A),
- o Install and sample one new on-Site groundwater monitoring well to be located approximately 125 feet northeast of well MW-5 to define the extent of 1,4-dioxane in this area (this location may need to be adjusted to avoid future buildings), and
- Collect groundwater samples and split samples from the sampling locations identified above and wells sampled as part of routine quarterly monitoring. As required by the

² EKI, 2003. Saturated Zone Work Plan, 13500 Paxton Street, Pacoima, California, 30 September.

Mr. David Bacharowski, RWQCB 3 July 2007 Page 6 of 6

RWQCB, all the samples will be analyzed for 1,4-dioxane by EPA Method 8270C (M) with isotope dilution. As a check on the results of this method, we propose to analyze selected split samples for 1,4-dioxane using EPA Method 8260B, which we understand to be a valid method for determination of 1,4-dioxane concentrations where the concentrations are suspected to be above approximately 50 ug/L.

Procedures for the proposed additional investigation will follow those previously approved by the RWQCB for the Site. A report of the results of this investigation will be submitted to the RWQCB approximately 30 days after the receipt of all analytical data.

Please contact us if you have questions or want to discuss this matter further.

Very truly yours,

ERLER & KALINOWSKI IN

Steven G. Miller, P.E.

Project Manager

cc: Mohammad Zaidi, RWQCB

Wendy Phillips, RWQCB

Linda Biagioni, Black & Decker

Lorraine Sedlak, Black & Decker

Eileen Nottoli, Allen Matkins

Enclosures:

Table 1 Summary of Total Chromium, Hexavalent Chromium, and 1,4-Dioxane Analytical Results for April 2007

Figure 1 Hexavalent Chromium Concentrations in Groundwater

Figure 2 1,4-Dioxane Concentrations in Groundwater

Figure 3 Proposed Groundwater Sampling Locations

Attachment A Borehole Logs for PPGW-1 through PPGW-12

Attachment B Well Development and Purge and Sampling Forms

Attachment C Analytical Laboratory Reports for Grab Groundwater Samples (Total Chromium, Hexavalent Chromium, and 1,4-Dioxane)

Table 1 Summary of Total Chromium, Hexavalent Chromium, and 1,4-Dioxane Analytical Results for April 2007

13500 Paxton Street, Pacoima, California

				Colma, Calife Analytic	al Results (µg/L)	
				, analytic	(pg/L)	
Well	Date	Note	Total Chromium	Hexavalent Chromium	1,4-Dioxane (Calscience)	1,4-Dioxane (K-Prime)
	r Monitoring W	/elis				
MW-4	4/3/2007		<1	2.1	<2	NA
MW-5	4/3/2007		<1	<0.2	1,300	332
MW-5	4/3/2007	DUP	<1	<0.2	NA	NA
MW-6	4/3/2007		7.4	9.4	<2	NA
MW-7	4/3/2007		1	3.1	2.2	<2
MW-8	4/2/2007		<1	<0.2	17	5.04
PMW-9	4/3/2007		<1	1.6	<2	NA
PMW-11	4/3/2007		NA	NA	<2	NA
PMW-13	4/3/2007		150	150	13	3.22
PMW-14	4/3/2007		<1	1.6	<2	NA
PMW-15	4/3/2007		NA	NA	20	7.96
PMW-19	4/3/2007		<1	0.46	NA	NA
PMW-20	4/2/2007		<1	0.5	NA	NA
PMW-37	4/2/2007		NA	NA	10	2.53
PMW-38	4/2/2007		1,490	1,500	34	10.2
PMW-38	4/2/2007	DUP	1,550	1,500	NA	NA
Grab Ground	water Samples	;				
PPGW-1	4/11/2007		2,160	2,100	<2	<2
PPGW-1	4/11/2007	DUP	2,210	2,100	NA	NA
PPGW-2	4/5/2007		80.5	87	72	19.3
PPGW-2	4/5/2007	DUP	82.2	85	NA	NA
PPGW-3	4/6/2007		<1	0.68	160	39.8
PPGW-4	4/4/2007		772	770	76	22.5
PPGW-5	4/10/2007		65	60	62	20.3
PPGW-5	4/10/2007	DUP	63.6	59	NA	NA
PPGW-6	4/10/2007		33.1	31	19	4.82
PGW-7	4/4/2007		<1	1.7	15	3.99
PGW-7	4/4/2007	DUP	<1	1.1	NA	NA
PGW-8	4/5/2007		55.7	58	28	9.66
PGW-9	4/10/2007		31	29	160	38.1
PGW-10	4/11/2007		51.5	51	370	68

Table 1

Summary of Total Chromium, Hexavalent Chromium, and 1,4-Dioxane Analytical Results for April 2007

13500 Paxton Street, Pacoima, California

				Analytic	al Results (µg/L)	1
Well	Date	Note	Total Chromium	Hexavalent Chromium	1,4-Dioxane (Calscience)	1,4-Dioxane (K-Prime)
Grab Groundw	ater Samples	S				
PPGW-11	4/9/2007		59.2	61	31	7.34
PPGW-11	4/9/2007	DUP	58	61	NA	NA
PPGW-12	4/6/2007		35.1	35	240	42.9
PPGW-12	4/6/2007	DUP	35.3	35	NA	NA
Blanks						
EB-1	4/5/2007		<1	<0.2	NA	NA
QCEB Filter-1	4/2/2007		<1	NA	NA	NA
QCEB Filter-2	4/3/2007		<1	NA	NA	NA
QCEB Filter-3	4/5/2007		<1	NA	NA	NA
QCEB Filter-8	4/11/2007		3.4	NA	NA	NA

Abbreviations:

< - Compound not detected at or above indicated laboratory detection limit

"DUP" - duplicate sample

QCEB - Equipment Blanks

QC Filter - Filter Blanks

ICP/MS - Inductively coupled plasma/mass spectroscopy

μg/L - Micrograms per liter

Notes:

- (1) Bladder pumps and tubing were used to collect samples in accordance with low flow purging and sampling procedures described in U.S. EPA Ground Water Issue: Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures, dated December 1995, and U.S. EPA Region 9 Quick Reference Advisory Use of Low-Flow Methods for Groundwater Purging and Sampling: An Overview, dated December 1995.
- (2) These samples were analyzed for chromium using EPA Method 200.8, for hexavalent chromium using EPA Method 218.6, and for 1,4-dioxane using either EPA Method 8270C(M) with Isotope Dilution (Calscience) or EPA Method 8270C without Isotope Dilution (K-Prime).

ATTACHMENT A

Borehole Logs for PPGW-1 through PPGW-12

Key to Borehole and Well Construction Logs

Blow Count (Penetration Resistance)

Recorded as the number of blows required to drive the sampler 0.5 feet into undisturbed sediment. Sample drive hammer weight \approx 140 pounds; fall \approx 30 inches.

Organic Vapor Meter (OVM) Readings

Locations Monitored

BZ - Breathing zone

C - Drill cuttings

A - Top of auger

S - Sample

Reported in volumetric parts per million (ppmv)

Well Cover Types

Flush mount Stove pipe

Color Description

10YR Munsell [®] alphanumeric system 4/3 Description of soil or rock color

Key to Borehole and Well Construction Logs SOIL CLASSIFICATION CHART

	MAJOR DIVISIO	NS.	SYME	BOLS	TYPICAL
	WASON DIVISIO	MS	GRAPHIC	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED BY NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS				CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00/20	SILT. AND			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE	CLAY			МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE				СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	HIGHLY ORGANIC SOI	LS	77 77 77 77 77 7 77 77 77 77 7	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENT

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

1-EK! STD - BH AND MW LOG PPGW APRIL 2007. GPJ EKIF V5.GDT 5/8/07

Bore	ehole 8	& W	<u>'ell</u> C	<u>onstr</u>	<u>uctio</u>	n Lo	og							inc.
BORE LOCA		13500) Paxtor	n Stree	t, Paco	ima, C	A 91331				BOREHOLE / WELL NAME	PPGV	V1	
DRILL COMP		ΓestAι	merica	Drilling	Corp.,	C-57	Lic. # 819548				PROJECT NAME	Price	Pfister	
DRILL. METH		Hollow	v-Stem	Auger							PROJECT NUMBER	A2003	34.03	
COND CASIN	UCTOR 'G						DIAMETER (inches)	FROM (feet)	то		DATE STARTED	4/10/07	DATE COMPL	ETED 4/20/07
BLANK							DIAMETER (inches)	FROM (feet)	ТО		BOREHOLE DIAM (inches)	8.0	TOTAL (feet)	DEPTH 59
PERFO	DRATED G		·····				DIAMETER (inches)	FROM (feet)	то		DATUM North A	merican	<u> </u>	Datum 1988
ROU	7 т	ype II	I/V Port	land C	ement v	with up	to 5% Bentonite	FROM 0.0	то	59.0	TOP OF CASING		GROUN	VD 4022.2
EAL								FROM (feet)	TO		LOCCED BY	Noah Ku	l	CONTRACT L
LTEF ACK	?							FROM (feet)	то		CHECKED BY	Logan Ha	ansen, P	G #7522
	re	emove	ed durir	ng abar	ndonme	ent.	h screen interval fro		•		J J		, ss.	
 -			AMPLE:	S T	1	1	_					Lii	၂	WELL
COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)	MATERIAL	DESCRIPTIOI	N AND	DRILL	ING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTIO
:10			0.7		0.0	10 -	SAND WITH GRA to coarse gravel; 8 with broken rock fr	<u>VEL</u> : dark yellov 15% fine to coars agments	wish bro se grain	wn (10 ed san	YR 4/6); 15% fine	sw		
						25 -								
:25		T	1.1		0.0	30 -	As above with brok	en rock fragmer	nts				\circ .	

PROJECT Price Pfister	Borehole & We	II Constru	iction				$\underline{\smile}$		inc.
MATERIAL DESCRIPTION AND DRILLING NOTES SO Out Out	PROJECT Price Pfisi	ter		PRC NUM	DJECT MBER A20034.03	BOREHOLE / WELL NAME	PPGW1		
08.39	SA	MPLES	T				Ш1	96	WELL
0.0 40 brown (10VR 4/3); dry to molet; increasing gravel to 30%; as above with broken rock fragments/rock flour 4/12/2007 4/5 SAND; brown (10VR 4/3); 10% fine to coarse gravel; 90% fine to coarse gravel; 90% fine to coarse gravel; 90% fine to coarse wet 55 - SAND; brown (10VR 4/3); 10% fine to coarse; wet 56 - Total Depth of Borehole ≈ 69 feet.	TIME COLLECTED SAMPLE NAME SAMPLE TYPE	RECOVERY (feet) BLOW COUNT	(Amdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	uscs cop	GRAPHIC LO	CONSTRUCTI
	08:39	1.1		35	SAND; brown (10YR 4/3); 10% fine to coarse coarse grained sand, mainly medium to coarse	4/12/2007 -	V 4/10/2007		

BOREH LOCAT		3500	Paxton	Street	, Pacoir	ma, C	A 91331				DREHOLE . ELL NAME		W2	
DRILLIN COMPA		estAn	nerica [Orilling	Corp., (C-57 L	ic. # 819548				ROJECT AME	Price	Pfiste	r
DRILLIN METHO		lollow	-Stem A	Auger							ROJECT JMBER	A200	34.03	
CONDU							DIAMETER (inches)	FROM (feet)	ТО		ATE ARTED	4/3/07	DATE	PLETED 4/9/07
BLANK CASING							DIAMETER (inches)	FROM (feet)	то		OREHOLE AM (inches	8.0	TOTAL	L DEPTH 67
PERFO							DIAMETER (inches)	FROM (feet)	TO	DA	TUM North	n Americar	Vertical	Datum 1988
GROUT	Т	ype II	/V Portl	and Ce	ement w	/ith up	to 5% Bentonite	FROM 0.0	TO 67	7.0 TC	P OF SING		GROU	
SEAL								FROM (feet)	ТО	LC	GGED BY	Noah Ki	utaka	
FILTER PACK	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							FROM (feet)	то	CH	IECKED B	Y Logan F	lansen, I	PG #7522
REMAR	re	move	d durin	r temp g aban	orary w donmer	ell wit	h screen interval fro	m 52-67 fee	bgs insta	alled for	grab grou	ndwater sa	ample co	llection. Well
T		SA	MPLES	; T	I	1						ter	ō	WELL
COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)	MATERIAL	DESCRIPTIC	IN AND D	PRILLING	NOTES	USCS CODE	GRAPHIC LOG	CONSTRUCTIO
							Unpaved ground s	urface		, , , , , , , , , , , , , , , , , , , 			9.0	P
							-						(a)	
						5 -	_						0	
							-						· (3	
							_						. Q	
08:11		I	1.2		0.0	10 -	SAND WITH GRA gravel; 65% fine to	<u>√EL;</u> brown (1 coarse graine	OYR 4/3); 3 d sand; dr	35% fine ry to mois	to coarse t; with broke	sw	0	
							rock fragments						, O	
							Auger binding on r	ocks					0 (
						15 -	- -						6 O.	
													0	
08:24		T	1.3		0.0	20 -	dark yellowish brov				to 15%; as		0	
,					3.3		above with broken	rock fragment	s/rock flou	ır			0 0	
							1						0	
						25 -	Difficult to advance	auger					0	
						,							· O.	
							-						0.0	
8:53		T	1.4		0.0	30 -	brown (10YR 4/3); rock fragments	increasing gra	vel to 30%	; as abov	e with broke	en	, O.	

PROJECT Pric	e Pfis		110114	001011		DJECT A20034.03	BOREHOLE / WELL NAME	PPGW2		inc.
	SA	MPLES					* 		(1)	
TIME COLLECTED SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
09:17		1.4		0.0	35 — 40 — 45 — 50 — 65 — 70 — 75 — 80 —	dark yellowish brown (10YR 4/4); as above Difficult to advance auger Decreasing gravel to 15%; as above brown (10YR 4/3); wet; increasing gravel to 30% broken rock fragments				

	hole &	We	ell Co	onstri	uctio	n Lo)g				<u>_</u>	<u> </u>	inc.
BOREH LOCAT	TON 13	3500	Paxton	Street	, Pacoi	ma, C	A 91331			BOREHOLE / WELL NAME	PPGV	V3	
DRILLII COMPA		estAn	nerica I	Drilling	Corp.,	C-57	Lic. # 819548			PROJECT NAME	Price	Pfister	•
DRILLII METHC		ollow-	-Stem /	Auger						PROJECT NUMBER	A2003	34.03	
CONDU							DIAMETER (inches)	FROM (feet)	то	DATE STARTED 4/	3/07	DATE COMP	LETED 4/9/01
BLANK CASING							DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	8.0	TOTAL (feet)	DEPTH 67
PERFO CASING							DIAMETER (inches)	FROM (feet)	ТО	DATUM North Am	erican	Vertical	Datum 1988
GROUT	Ту	pe II/	V Porti	land Ce	ement v	vith u	to 5% Bentonite	FROM 0.0	^{TO} 67.0	TOP OF CASING		GROU! SURF!	
SEAL								FROM (feet)	то	LOGGED BY N	oah Ku	taka	
FILTER PACK					.9		***************************************	FROM (feet)	ТО	CHECKED BY Lo	gan Ha	ansen, F	PG #7522
REMAR		nch d move	liamete d durin	er temp ig aban	orary w donme	vell wi nt.	th screen interval fro	m 52-67 feet l	bgs installed	d for grab groundwa	ater sar	mple col	llection. Well
		SA	MPLES	5					****			(0	
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)	MATERIAL .	DESCRIPTION	N AND DRILI	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
					 		Unpaved ground s	urface				• •	777
11:35		——————————————————————————————————————	1.0		0.0	5	SAND WITH GRAY gravel; 85% fine to rock fragments/roc	coarse grained			sw		
12:16			1.4		0.0	15 -	dark yellowish brov	vn (10YR 4/4); a	as above				
2:26			1.5		0.0	25 -	as above						

SAMPLE NAME	Ce Pfis SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	W/O (\text{\sqrt{mdd}})	(te	DJECT A20034.03 MATERIAL DESCRIPTION AND DRIL	WELL WANE	NSCS CODE WAS	GRAPHIC LOG	WELL CONSTRUCTION
COLLECTED SAMPLE NAME			Т	OVM (pmy)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	3RAPHIC LOG	WELL CONSTRUCTION
		<u> </u>	_		1					
12:48		1.3		0.0	35 — 40 — 45 — 50 — 65 — 70 —	Increasing gravel to 30%; as above with broken brown (10YR 4/3); decreasing gravel to 15%; a SAND; brown (10YR 4/3); 10% fine to coarse g coarse grained sand, mainly medium to coarse black and white sand grains Total Depth of Borehole = 67 feet.	is above 4/6/2007 ⁻	4/3/2007		

1-EKI STD - BH AND MW LOG PPGW APRIL 2007.GPJ EKIF_V5.GDT 5/8/07

Boi	rehole (<u>& W</u>	<u>'ell C</u>	onsti	ructio	n Lo	g							inc.
BOR LOC	EHOLE ATION	13500	Paxto	n Stree	et, Paco	ima, C	A 91331				BOREHOLE / WELL NAME	PPGV	N4	
DRIL COM	LING PANY	TestA	merica	Drilling	g Corp.,	C-57 L	.ic. # 819548				PROJECT NAME	Price	Pfister	r
DRIL MET		Hollov	v-Stem	Auger							PROJECT NUMBER	A200	34.03	
CON.	DUCTOR NG						DIAMETER (inches)	FROM (feet)	то		DATE STARTED	4/2/07	DATE	LETED 4/9/07
BLAN CASI		******	*******		******		DIAMETER (inches)	FROM (feet)	TO		BOREHOLE DIAM (inches)	8.0		DEPTH 60
PERF CASI	ORATED NG						DIAMETER (inches)	FROM (feet)	ТО		DATUM North A	merican	<u> </u>	Datum 1988
GRO	JT -	Гуре І	I/V Port	tland C	ement		to 5% Bentonite	FROM 0.0	TO (60.0	TOP OF CASING		GROU SURFA	ND 1026.70
SEAL					· · · · · · · · · · · · · · · · · · ·			FROM (feet)	ТО		LOCCED BY	Noah Ku	1	102
FILTE								FROM (feet)	то		CHECKED BY	Logan Ha	ansen, F	PG #7522
REMA	RKS 2	?-inch	diamete	er temp	oorary v	vell with	n screen interval fro	1' '	bgs ins	stalled				
	,	CINOV	eu uum	ig abai	luurime	:11t.								
		S.	AMPLE:	s										
- G		PE /	≿	TN1		T û	-					ЭОС	907	WELL CONSTRUCTION
TIME COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	вгом соилт	OVM (vmqq)	DEPTH (feet)	MATERIAL	DESCRIPTIO	N AND I	DRILLI	NG NOTES	USCS CODE	GRAPHIC LOG	
700	δ<	SAMF	REC (ВГОИ		DEP						NS N	GR	
							Unpaved ground	surface					0	7777
													· ()	
													.0	
						5							· ()	
													, Q	
08:20		T	1.0		0.0	10 -	SAND WITH GRA	<u>VEL;</u> dark yellov	wish bro	wn (10)	'R 4/4); 30% fine	sw	· ()	
		1	'		0.0	-	to coarse gravel; 7 with broken rock fr	0% fine to coar agments	se graine	ed sand	; dry to moist;		. O .	
						-							. Q.	
						15 —							000	
						-							ه ()	
Ì						_							0 0	
08:30		T	1.2		0.0	20	dark yellowish brov	wn (10YR 4/6); (decreasi	ing grav	el to 20%; as		o 7	
		1	, ,		0.0	-	above							
						_							° O.	
						25 —							6 ())	
													0.0	
						-							• 0	
8:42		$ _{\top} $	10			30 —	dark yellowish brow	vn (10YR 4/4): r	lecreasi	na aravi	el to 15%: as		0 C	
0:42			1.0		0.0	55	above	、、、、 , , , , , , , , , , , , , , , ,		y.av	o. to 1070, do		0	r

PROJEC NAME	Price	Pfist	er			PRO NUI	JECT A20034.03 BOREHOLE / WELL NAME P	PGW4	ı	
TIME COLLECTED	SAMPLE NAME	SAMPLE TYPE S	RECOVERY THE (feet)	BLOW COUNT	OVM (vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTIO
08:55		T	1.3		0.0	35 —	brown (10YR 4/3); increasing gravel to 30%; as above			
09:05		I	0.8			50	4/4/2007 • brown (10YR 5/3); wet; as above	∀ 4/2/2007		
09:11			1.5			60	SAND WITH GRAVEL; brown (10YR 4/3); 30% fine to coarse gravel; 70% medium to coarse grained sand; wet Total Depth of Borehole = 60 feet.	SP		
						65 — -				
						70 —				
						75 — - - -				
						80 -				

Borehole BOREHOLE									BOREHOLE /	<u> </u>		Kalinows Inc.
LOCATION	13500	Paxtor	n Street	t, Pacoi	ma, C	A 91331			WELL NAME	PPG\	N5	
DRILLING COMPANY	TestA	merica	Drilling	Corp.,	C-57 L	_ic. # 819548			PROJECT NAME	Price	Pfister	r
DRILLING METHOD	Hollow	v-Stem	Auger						PROJECT NUMBER	A200	34.03	
CONDUCTOR CASING						DIAMETER (inches)	FROM (feet)	то	DATE STARTED	4/6/07	DATE COMP	LETED 4/20/0
BLANK CASING						DIAMETER (inches)	FROM (feet)	то	BOREHOLE DIAM (inches)	8.0	TOTAL (feet)	DEPTH 58
PERFORATED CASING						DIAMETER (inches)	FROM (feet)	ТО	DATUM _{North}	American	Vertical	Datum 1988
GROUT	Type II	I/V Port	land Ce	ement w	vith up	to 5% Bentonite	FROM 0.0	TO 58.0			GROU SURFA	ND 4004
SEAL							FROM (feet)	TO	LOGGED BY	Noah Ku	<u> </u>	102
FILTER PACK							FROM	ТО	CHECKED BY	Logan H	ansen. F	PG #7522
REMARKS	2-inch	diamete	er temp	orary w	ell wit	h screen interval fro	(feet) om 43-58 fee	t bgs installe	_ ed for grab groun	-		
	remove	ed durin	ig aban	donmer	nt.							
	0,	AMPLES	•		·····					<u> </u>		
		т	T	1		_				JE	90	WELL
AE CTEL PLE WE	TYP	VERY	NOO	M (yu	(feet)	MATERIAL	DESCRIPTIO	ON AND DRIL	LING NOTES	uscs cobe	HICT	CONSTRUCTI
TIME COLLECTED SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ppmv)	DEPTH (feet)					nsc	GRAPHIC LOG	
0	3	<u> </u>	BI		9			***************************************				
						Unpaved ground s approximately 3 fe	surface in exca et below surro	vated area of junding ground	Bldg. B footprint I surface		; (); ()	
						_					0 0	
					5 ~	- -					. O.	
						Rig struggling thro	ugh rocks				0 0	
											, O	
8:15	T	0.9		0.0	10 -	SAND WITH GRAY gravel; 85% fine to	VEL; brown (1	DYR 4/3); 15%	fine to coarse	sw	0 0	
	-]	roduse granie	a sana, ary to	moist		, O	
											$[\cdot \ \bigcirc]$	
					15	1					, O	
											• G	
					-						000	
8:23		1.3		0.0	20 —	Increasing gravel to	o 30%; as abo	ve				
					-						0 0	
					-						. O.	
					25 —							
					-						. O.	
					_						• <u>()</u> •	
3:32	T	0.8		00	30 —	dark yellowish brow	/n (10YR 4/4):	decreasing or	avel to 15%; as		0 C	
3:32		0.8			- - -	dark yellowish brow above	/n (10YR 4/4);	decreasing gr	avel to 15%; as		° ()	111111

PROJECT Price	e Pfist				Log PRO	DJECT A20034.03	BOREHOLE /	PPGW5		
NAME FIRE		AMPLES		······································	NUN	MBER A20004.00	WELL NAME	1		
COLLECTED SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MAO (bmdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
09:00		1.3		0.0	35 40 45 50 55 60 65 70 75 80	SAND WITH GRAVEL; brown (10YR 4/3); 15% gravel; 85% fine to coarse grained sand, mainly wet; with peppery black and white sand grains Total Depth of Borehole = 58 feet.	fine to coarse medium to coarse;	4/6/2007		

Borehol BOREHOL	E									BOREHOLE /		1	inc.
LOCATION		3500	Paxton	Street	t, Pacoi	ma, C	A 91331			WELL NAME	PPGV	V6 	
COMPANY	, Te	estAn	nerica [Drilling	Corp.,	C-57 L	ic. # 819548			INAINL	Price	Pfister	·
DRILLING METHOD	Н	ollow-	-Stem /	Auger						PROJECT NUMBER	A200	34.03	
CONDUCT CASING	OR ·						DIAMETER (inches)	FROM (feet)	ro	DATE STARTED 4/	6/07	DATE COMP	LETED 4/20/0
BLANK CASING							DIAMETER (inches)	FROM (feet)	го	BOREHOLE DIAM (inches)	8.0	TOTAL (feet)	DEPTH 74
PERFORAT	TED						DIAMETER (inches)	FROM (feet)	ro	DATUM North Am	erican	Vertical	Datum 1988
GROUT	Ту	pe II/	√ Portl	and Ce	ement v	vith up	to 5% Bentonite	FROM 0.0	74.0	TOP OF CASING		GROU! SURF#	ND 1034.
SEAL								 	ro	LOCCED BY	oah Ku	I	
FILTER PACK								<u> ` </u>	0	CHECKED BY Lo	gan Ha	ansen, F	PG #7522
REMARKS	2-i	nch d	liamete	er temp	orary w	ell wit	n screen interval fro	<u> </u>	s installed				
	rer	nove	d durin	g aban	donme	nt.							
·		64	MPLES				<u> </u>						
		1	T	Ι.	T	T	-				DE	90	WELL CONSTRUCTIO
WE CCTEL	SAMPLE NAME	E TYP	VERY 9t)	SOUN	W (yu	/ (feet,	MATERIAL	DESCRIPTION /	AND DRILL	LING NOTES	uscs cobe	SRAPHIC LOG	CONSTRUCTIO
COLLECTED	NA	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ymdd)	DEPTH (feet)					usc	GRAF	
		Ś		l ag	-	7	Unpaved ground s	urface		······································		•	
												o ()	
						1	_					00	
						5 -						. ()	
							-					0	
							-					。 ()	
10:02		T	0.5		0.0	10 -	SAND WITH GRAV to coarse gravel; 76	VEL; dark yellowis	h brown (1 grained sa	OYR 4/4); 30% fine nd; dry to moist	sw	0 0	
							1			ŕ		8 O	
							-					$[\cdot, C]$	
						15 -	-					0	
							-					• 0	
												000	
10:09		T	1.0		0.0	20 -	Decreasing gravel	to 15%; as above	with broker	n rock fragments		° ()	
											-	0 0	
						-						0.	
						25 -							
						-						, O	
						-						· ()	
10:18		T	ne			30 —	brown (10YR 4/3); i	increasing gravel	to 30%; as	above		0.0	
10:18			0.6		0.0	30 -] 3.0(10.11.120), 1	graver	00 /0, 03			0	<u> </u>

Borehole & W	veli Consti	ruction L				$\underline{}$		inc.
PROJECT Price P	fister		PROJE NUMB	ECT A20034.03	BOREHOLE / WELL NAME	PPGW6		
	SAMPLES						(0)	
COLLECTED SAMPLE NAME	SAMPLE TYPE RECOVERY (feet) BLOW COUNT	(Amdd) WAO	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCT!
10:28	0.8			ark yellowish brown (10YR 4/4); as above				
10:36	0.4	55	-	ioist; as above				
10:46	1.3	60	_	AND: dark grayish brown(10YR 4/2); 10% fine 0% fine to coarse grained sand; moist to wet	to coarse gravel; 4/10/2007	SW \$\frac{}{4/6/2007}		
11:12	1.3	70	- bla	AND WITH GRAVEL; dark grayish brown(10Yl arrse gravel; 60% fine to coarse grained sand; ack and white sand grains stal Depth of Borehole = 74 feet.	R 4/2); 40% fine to wet; with peppery	sw		
		80	-					

Borehole BOREHOLE									DODENOLE /	$\overline{}$	<u> </u>	inc.
LOCATION	13500	Paxton	Street,	Pacoir	na, CA	¥ 91331 	BOREHOLE / WELL NAME	PPGV	N7			
DRILLING COMPANY	TestA	merica (Orilling (Corp., (C-57 L	ic. # 819548	·········		PROJECT NAME	Price	Pfister	•
DRILLING METHOD	Hollow	/-Stem /	Auger						PROJECT NUMBER	A200	34.03	
CONDUCTO CASING	R					DIAMETER (inches)	FROM (feet)	ТО	DATE STARTED	4/2/07	DATE COMP	LETED 4/20/
BLANK CASING						DIAMETER (inches)	FROM (feet)	TO	BOREHOLE DIAM (inches)	8.0	TOTAL (feet)	DEPTH 65
PERFORATE CASING	D					DIAMETER (inches)	FROM (feet)	то	DATUM North	American	Vertical	Datum 1988
GROUT	Type I	I/V Portl	and Ce	ment w	/ith up	to 5% Bentonite	FROM 0.0) ^{TO} 65.0	TOP OF CASING		GROU SURFA	ND 1034.
SEAL				TMAN.			FROM (feet)	ТО	LOGGED BY	Noah Ku	taka	
FILTER PACK							FROM (feet)	ТО	CHECKED BY	Logan H	ansen, F	PG #7522
REMARKS	Well re	moved	during a	abando	nment	n screen interval fro	лп 47.5-62.5	rieet bys ms	alled for grab gr	oundwate	r sample	conection.
		AMPLES) 	T	т					111	စ်	WELL
TIME COLLECTED SAMPLE	NAME SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	W/VO (Amdd)	DEPTH (feet)	MATERIAL	DESCRIPTIO	ON AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	CONSTRUCTI
						Unpaved ground s	surface				. O	7777
11:05	I	1.2		0.0	10 15 20 25	SAND WITH GRA gravel; 70% fine to As above with brot	o coarse graine	ed sand; dry to	o fine to coarse moist	sw		
			İ								, 0.	

Borehole & We	II Constru	iction				<u> </u>		Inc.
PROJECT Price Pfis	ter		PRO. NUM	JECT BER A20034.03	BOREHOLE / WELL NAME	PPGW7		
SAMPLE NAME SAMPLE NAME SAMPLE TYPE	RECOVERY (feet)	(vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTI
11:32	1.0	0.0	35 —	brown (10YR 4/3); decreasing gravel to 15%; a	as above			
12:15	1.4	5	45 —	moist to wet; as above with large rock fragment		▼		
12:24	1.5		1	SAND; brown (10YR 4/3); 10% fine to coarse gcoarse grained sand, mainly medium to coarse; black and white sand grains Total Depth of Borehole = 65 feet.	ravel; 90% fine to ; wet; with peppery	SP	Δ O	
		7:	5 -					
		80	0 —					

20,0,,0,0	a rron contandition L	-09					
BOREHOLE LOCATION	13500 Paxton Street, Pacoima,	CA 91331			BOREHOLE / WELL NAME	PPGV	V8
DRILLING COMPANY	TestAmerica Drilling Corp., C-5	7 Lic. # 819548			PROJECT NAME	Price	Pfister
DRILLING METHOD	Hollow-Stem Auger				PROJECT NUMBER	A200	34.03
CONDUCTOR CASING		DIAMETER (inches)	FROM (feet)	TO	DATE STARTED	4/2/07	DATE COMPLETED 4/20/07
BLANK CASING		DIAMETER (inches)	FROM (feet)	то	BOREHOLE DIAM (inches)	8.0	TOTAL DEPTH 65 (feet)
PERFORATED CASING		DIAMETER (inches)	FROM (feet)	ТО	DATUM North	American	Vertical Datum 1988
GROUT	Type II/V Portland Cement with	up to 5% Bentonite	FROM 0.0 (feet)	^{TO} 65.0	TOP OF CASING		GROUND SURFACE 1037.36
SEAL			FROM (feet)	то	LOGGED BY	Noah Ku	taka
FILTER PACK			FROM (feet)	то	CHECKED BY	Logan H	ansen, PG #7522
REMARKS	2-inch diameter temporary well v	with screen interval fro	om 48-63 feet	bgs installed	for grab groun	dwater sa	mple collection. Well

removed during abandonment.

			SA	MPLES	}					(5)	
	TIME COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ymdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
				<u> </u>				Unpaved ground surface		, U	7771
V5.GDT 5/8/07	13:52			1.0		0.0	5	SAND WITH GRAVEL; brown (10YR 5/3); 15% fine to coarse gravel; 85% fine to coarse grained sand; dry to moist	sw		
-EKI STD - BH AND MW LOG PPGW APRIL 2007.GPJ EKIF VS.GDT	14:01			1.1		0.0	20 —	brown (10YR 5/3); increasing gravel to 30%; as above with broken rock fragments containing black and green minerals			
1-EKI ST	14:10		T	1.0		0.0	30 —	brown (10YR 4/3); as above with increasing broken rock fragments		0.0 0.	

PAGE __1 OF __2

PROJECT COTTECTED COTTECTED		SAN	MPLES	·		PRO NUI	DJECT A20034.03	BOREHOLE / WELL NAME	PPGW8	<u> </u>	
TIME											
COLLECTED	SAMPLE NAME	E TYPE	٨						-	1 00	
		SAMPL	RECOVERY (feet)	BLOW COUNT	OVM (vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTI
14:20			1.5		0.0	35	As above very dark grayish brown (10YR 3/2); moist; dec 15%; as above with broken rock fragments	4/5/2007 reasing gravel to	₹		
14:55	I		1.5			60 -	SAND WITH GRAVEL: brown (10YR 4/3); 15% gravel; 85% fine to coarse grained sand, mainly wet; with peppery black and white sand grains Total Depth of Borehole = 65 feet.	fine to coarse medium to coarse;	SP		
						70	. See Boyer of Boronoic - 00 legt.				

1-EKI STD - BH AND MW LOG PPGW APRIL 2007.GPJ EKIF V5.GDT 5/8/07

Boi	ehole 8	R W	<u>'ell C</u>	onstr	uctio	n Lo	g					<u>し</u>		inc.
BOR.	EHOLE ATION 1	3500) Paxto	n Stree	t, Paco	ima, C	A 91331			BOREH WELL N		PPGV	V 9	
DRIL COM	LING PANY T	estA	merica	Drilling	Corp.,	C-57 I	_ic. # 819548			PROJEC NAME	CT .	Price	Pfister	•
DRIL. METI		tollov	v-Stem	Auger						PROJEC NUMBE		A200	34.03	
CONI CASI	DUCTOR NG						DIAMETER (inches)	FROM (feet)	то	DATE STARTE	_D 4	/5/07	DATE COMP	LETED 4/20/07
BLAN							DIAMETER (inches)	FROM (feet)	TO	BOREHO DIAM (in	DLE	8.0	TOTAL	. DEPTH 77
PERF	ORATED VG	*****					DIAMETER (inches)	FROM (feet)	то	DATUM	North An	nerican	<u> </u>	Datum 1988
RO	<i>ЛТ</i> Т	ype I	I/V Por	tland C	ement :	with up	to 5% Bentonite	FROM (feet) 0.0	70 ₇	7.0 TOP OF CASING			GROU SURFA	
EAL								FROM (feet)	то	LOGGE) BY	loah Ku	L	, <u></u>
								FROM (feet)	то	CHECKE	DBY L	ogan Ha	ansen, F	PG #7522
REMA	RKS 2-	inch mov	diamet ed durii	er temp	orary v	vell wit	h screen interval fro	m 62-77 feet	bgs inst	alled for grab	groundw	ater saı	mple co	llection. Well
													· · · · · · · · · · · · · · · · · · ·	
			AMPLE	s T	<u> </u>	1						100	Ō	WELL
STED	Z.E.	TYPE	'ERY	OUNT	23	(feet)	MATERIAL	DESCRIPTIO	N AND D	RILLING NOTI	ES	uscs cobe	07 011	CONSTRUCTION
COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)						uscs	GRAPHIC LOG	
		+"		1		 	Unpaved ground s	surface					• 🗸	
4:09			1.0		0.0	10 -	SAND WITH GRAY gravel; 85% fine to dark yellowish brow above with broken	vn (10YR 4/4);	d sand; dr	y to moist		sw		
1:27			0.3		0.0	30 —	Decreasing gravel t	o 15%; as abo	ve with co	ncrete fragment	s			

PROJEC NAME	CT Price	Pfist	er			PRO	DJECT A20034.03	BOREHOLE / WELL NAME	PPGW9	_	
TIME	SAMPLE NAME	SAMPLE TYPE S	RECOVERY H	BLOW COUNT	MVO (ymdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND	D DRILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTIO
14:34		Ţ	0.6		0.0	35 —	As above				
14:50		T	0.5		0.0	50 —	brown (10YR 5/3); increasing gravel to 3	10%; as above			
15:04			0.8		0.0	60	dark yellowish brown (10YR 4/4); decrea above		∇		
15:20			1.5			70 -	SAND: dark yellowish brown (10YR 4/4); grained sand, mainly medium to coarse; and white sand grains	; 100% fine to coarse	¥4/5/2007		
						80	Total Depth of Borehole = 77 feet.				

Boreho	ole &	W	ell Co	onstr	uctio	n Lo	g				<u> </u>	<u> </u>	inc.
BOREHOL LOCATION	.E 13	3500	Paxtor	Stree	t, Paco	ima, C	A 91331			BOREHOLE / WELL NAME	PPGV	V10	
DRILLING COMPANY	, Te	estAr	nerica	Drilling	Corp.,	C-57	_ic. # 819548			PROJECT NAME	Price	Pfister	
DRILLING METHOD	Ho	ollow	-Stem	Auger				**************************************		PROJECT NUMBER	A2003	34.03	
CONDUCT CASING	OR						DIAMETER (inches)	FROM (feet)	то	DATE STARTED	4/6/07	DATE COMP	LETED 4/20/0
BLANK CASING							DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	8.0	 	DEPTH 85
PERFORA' CASING	TED						DIAMETER (inches)	FROM (feet)	ТО	DATUM North	American		Datum 1988
GROUT	Туј	pe II	√ Port	land Co	ement v	with up	to 5% Bentonite	FROM 0.0	TO 85.0	TOP OF CASING		GROU! SURF!	VD 40074
SEAL								FROM (feet)	TO	LOGGED BY	Noah Kul	1	
FILTER PACK								FROM (feet)	TO	CHECKED BY	Logan Ha	ansen. F	G #7522
REMARKS	2-ir	nch c	diamete	er temp	orary w	vell wit	h screen interval fro		bgs installed				
	1611	nove	a aurin	g abar	ndonme	nt.							
	<u></u>	SA	MPLES	S									
0:	·····	PE	>	TN		T g	_				JOE	907	WELL CONSTRUCTION
COLLECTED	SAMPLE NAME	LE TY	RECOVERY (feet)	cou	OVM (ymdd)	DEPTH (feet)	MATERIAL	DESCRIPTIO	N AND DRILL	ING NOTES	USCS CODE	GRAPHIC LOG	
COLL	₹2	SAMPLE TYPE	REC.	BLOW COUNT	0.6	DEPT					Sn	GRA	
					-		Unpaved ground s	surface				. V	777
												o. ()	
												O	
						5 -	-					. O	
							_					0.0	
		 - 				10	SAND WITH GRA	VEL: brown (10	VP 4/3)- 300/ /	ing to access	sw	. O	
13:22			0.8		0.0	10 -	gravel; 70% fine to rock fragments	coarse grained	d sand; dry to r	noist; with broken	3,,,	0	
							-					О	
						15 -	1						
												6) • • ()	
							- <u> </u> - <u> </u>					0 0	
3:30		T	0.7		0.2	20 -	dark yellowish brov	vn (10YR 4/4); ;	as above			9	
5.50		1	0.7		0.2	•	•	,					
						-						O.	
						25 —							
						-							
						-						· 04	
4:14		$_{T}$	0.7		0.0	30 —	as above with broke	en rock fragmer	nts/rock flour			o 0 0	
		$\perp \perp$	0.7		0.0			<u>-</u>				0.	rcc

PROJEC NAME	CT Price	Pfist	er			PRO NUM	NECT A20034.03 MBER A20034.03	BOREHOLE / WELL NAME	PPGW1	0	
		SA	MPLES						11.	6	14/51
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRIL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTIO
14:26			1.3		0.0	35	dark yellowish brown (10YR 3/4); as above				
14:34		<u> </u>	1.3		0.0	50 —	dark yellowish brown (10YR 4/4); decreasing gabove with broken rock fragments	gravel to 15%; as			
14:47			0.7		0.2	60	Increasing gravel to 30%; as above				
14:56			0.6			70 —	SAND: brown (10YR 4/3); 10% fine to coarse coarse grained sand; wet; with peppery black grains	4/11/200 gravel; 90% fine to and white sand)7 ▼ ∇ 4/6/2007 SW	.0	
15:06		T	1.5	The state of the s		75 —			SP		

Erier & Kalinowski, inc.

	renole &	VVC	11 001	11511 6	ictioi				<u> </u>		inc.
PROJECT Price Pfister PRONULL PROJECT NAME PROJECT NUMBER OF THE PROJECT NUMBER OF THE PROJECT NAME PROJECT PROJECT NAME P						PRI NUI	OJECT MBER A20034.03	BOREHOLE / WELL NAME	PPGW1	0	
SAMPLES										(6)	
TIME	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRI		USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
		H SAM	RE	BLO	1 1	90 95 90 115	SAND: brown (10YR 4/3); 10% fine to coarse coarse grained sand, mainly fine to medium; black and white sand grains Total Depth of Borehole = 85 feet.	gravel; 90% fine to wet; with peppery		96	

Borehole	& We	ell Co	<u>nstru</u>	ction	Log	<u> </u>					<u> </u>		inc.	
BOREHOLE LOCATION	HOLE 13500 Poyton Street Pageina CA 91331										PPGW	PPGW11		
DRILLING COMPANY TestAmerica Drilling Corp., C-57 Lic. # 819548 PROJECT NAME												Price Pfister		
DRILLING METHOD Hollow-Stem Auger PROJECT NUMBER												A20034.03		
CONDUCTOR CASING	?					DIAMETER inches)	FROM (feet)	то		DATE STARTED	4/5/07 DATE COMPLETED 4/20/0			
BLANK CASING						DIAMETER inches)	FROM (feet)	ТО		BOREHOLE DIAM (inches)	8.0 TOTAL DEPTH 66			
PERFORATEL CASING				DIAMETER inches)	FROM (feet)	то		DATUM North	American Vertical Datum 1988					
GROUT	Type II/	/V Portla	and Cei	ment wi	th up t	o 5% Bentonite	FROM 0.0 (feet)	то	66.0	TOP OF CASING		GROUI SURFA		
SEAL			LOGGED BY	Noah Kut	aka									
FILTER PACK		<u> </u>			(-1000)	(feet) FROM (feet)	то		CHECKED BY	Logan Ha	nsen, F	PG #7522		
REMARKS	2-inch o	diamete d during	r tempo g abano	rary we	ell with	screen interval from		bgs in:	stalled	for grab ground	dwater sar	nple col	lection. Well	
		140/50									1	1		
TIME COLLECTED SAMPLE	F.	RECOVERY THE T	BLOW COUNT	OVM (ymdd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DRILLING NOTES						GRAPHIC LOG	WELL CONSTRUCTIO	
Ö	SA	R	78			Unpaved ground s	urface							
07:57	I	1.2		0.0	5 —	SAND WITH GRA gravel; 85% fine to rock fragments	<u>VEL</u> ; brown (10 coarse graine	9YR 4/3 d sand;	i); 15% dry to	fine to coarse moist; with broker	sw			
D8:07	I	1.0		0.0	20 —	Rig struggling thro dark yellowish bro above with broken Rig struggling thro	wn (10YR 4/4); rock fragment	increas	sing gra	avel to 30%; as				
08:54		0.8		0.0	30 —	Decreasing gravel fragments/rock flou		ove with	n broke	n rock				

Borehole & Well Construction Log

	enoie &	***	<i>711</i> OC	Jiisu c	101101						<u> </u>		Inc.
PROJ. NAME	ECT Pric	e Pfis	ster			PRO NUM	JECT MBER	A20034.03		BOREHOLE / WELL NAME	PPGW1	1	
	1		AMPLE	S	1	1					111	9	IA/E/ /
TIME COLLECTED	SAMPLE NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	MVO (vmqq)	DEPTH (feet)	,	MATERIAL DESCRI	PTION AND DRILL	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
09:08	SA N	SAMP	1.1 L.1	ВГОМ	0.0	35	SAND; mainly r grains	o wet; increasing grav nts dark brown (10YR 3/3 medium to coarse; we	B); 100% fine to coal st; with peppery blac	4/9/2007	▼ #5/2007		
						70 —	Total De	epth of Borehole = 66	feet.				

Borehole & Well Construction Log

Borehol	e & V	<i>Ve</i>	II Co	nstru	ıctior	ı Log	9				<u> </u>		Inc.
BOREHOLE LOCATION										BOREHOLE / WELL NAME	PPGV	V12	
DRILLING COMPANY	Test	tAm	erica E	rilling (Corp., C	C-57 Li	ic. # 819548			PROJECT NAME	Price	Pfister	
DRILLING METHOD	Holle	ow-	Stem A	uger						PROJECT NUMBER	A2003	34.03	
CONDUCTO CASING	PR						DIAMETER (inches)	FROM (feet)	то	DATE STARTED	4/3/07	DATE COMPL	ETED 4/9/07
BLANK CASING							DIAMETER (inches)	FROM (feet)	ТО	BOREHOLE DIAM (inches)	8.0	TOTAL (feet)	DEPTH 66
PERFORATI CASING	ED						DIAMETER 'inches)	FROM (feet)	ТО	DATUM North A	merican Vertical Datum 1988		
GROUT	Туре	e II/	V Porti	and Ce	ment w	ith up	to 5% Bentonite	FROM 0.0 (feet)	^{TO} 66.0	TOP OF CASING		GROUI SURFA	
SEAL								FROM (feet)	ТО	LOGGED BY	Noah Ku	taka	
FILTER PACK						****		FROM (feet)	то	CHECKED BY	Logan Ha	ansen, P	G #7522
REMARKS					orary w		screen interval from	m 51-66 fee	t bgs installed	d for grab ground	lwater sai	mple col	lection. Well
			·										
		SA	MPLES									6	
TED		YPE	:RY	UNT		eet)	MATERIAL	DESCRIPTION	ON AND DO!!	LING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTIO
TIME COLLECTED SAMPLE	NAME	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	OVM (ppmv)	DEPTH (feet)	MATERIAL	MATERIAL DESCRIPTION AND DRILLING NOTES					
00 8		SAM	RE	BLO		DE						9	
							Unpaved ground s	urface				· ()	
]					0 0	
						5	Rig struggling, rocl	ks observed in	n cuttings			. O	
							-					00	
		ļ					-					. O	
14:10		\mathbb{I}	1.3		0.0	10 -	SAND WITH GRAY	fine to coars	yish brown(10) e grained sand	(R 4/2); 15% fine to t; dry to moist; with	sw	00	
							broken rock fragme	ants				6 Q	
	İ											0 0	
						15 –	_					6 O	
							4					0 0	
		_					dark yellowish brov	···· (40\/P) 4/0\				, O	
14:18		\rfloor	1.0		0.0	20 -	- dark yellowish brov	WILL TO TR 4/0,	, as above				
1						-						, O.	
						25						• ()	
						- 20						O	
							-					• O	
	-	_				30 -	brown (10YR 4/3);	as above with	broken rock f	ragments/rock flour		o 0	
14:27		Ш	1.5		0.0	50 -	2.5(1011.110)					o	rrr

Borehole & Well Construction Log

1-EKI STD - BH AND MW LOG PPGW APRIL 2007.GPJ EKIF V5.GDT 5/8/07

	orenole &	VVE	<i>311 CO</i>	ristru	ictioi				$\overline{}$		Inc.
PRO NAM	OJECT Pric ME Pric	e Pfis	ster			PRO NUM	OJECT MBER A20034.03	BOREHOLE / WELL NAME	PPGW1	2	
		SA	AMPLES	3							
TIME	SAMPLE	SAMPLE TYPE	RECOVERY (feet)	BLOW COUNT	WAO (xudd)	DEPTH (feet)	MATERIAL DESCRIPTION AND DR	ILLING NOTES	USCS CODE	GRAPHIC LOG	WELL CONSTRUCTION
14:42			1.0			35 — 40 — 45 — 65 — 70 — 75 — 80 —	dark yellowish brown (10YR 4/6); as above Rig struggling through rocks brown (10YR 4/3); as above SAND; brown (10YR 4/3); 10% fine to coarse coarse grained sand, mainly medium to coarse black and white sand grains Total Depth of Borehole = 66 feet.	gravel; 90% fine to	¥ ↓ ↓ A/3/2007		

ATTACHMENT B

Well Development and Purge and Sampling Forms

LOW FLOW WELL MONITORING DATA SHEET

		<u> LO 11</u>	I DOW W		TIOKEN	G DATA	SHEET				
Project ;	#: 0701	129-5+1			EKI						
Sampler	: SL			Start Date	e: 1/29]	07					
Well I.D).: grab-	1-50,20	0- C K1	Well Dia	meter: (2)) 3 4	6 8				
Total W	ell Depth:			Depth to	Water 4	7.71					
Depth to	Free Prod	luct:	**************************************		of Free P		eet)·				
Referenc	ed to:	(PVC)	Grade		Flow Cell Type: 457 556						
Purge Meth Sampling M Flow Rate:	Aethod:	2" Grundi Dedicated			Peristaltic Pump New Tubing Pump Depth: Bladder Pump Other Dispuse						
Time	Temp.	pH	Cond (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
1310	29.00	7.76	-176.0	-3 qa (
Did well d	ewater?	Yes (1	(ولاً		Amount a	ctually ev	racuated: 399	1			
ampling 7	Time: 13	10		i.	Sampling	Date: (3/07				
ample I.D): <u>mu</u>	·6 gri	26-1-Su	t I	Laborator	y: Calso	TELLE				
nalyzed f	or:	1	втех мтве			Other: 50					
quipment	Blank I.D	•	@ Time	Duplicate I.D.:							
				Topason ALD.							

Project a	#· '070;	29-ST	FLOW W			G DATA	SHEET	Water the Continues of				
	~			Client:		1						
Sampler					e: 1/24							
Well I.D	D.: Grab-	1 (pump)	Well Dia	meter: (2º) 3 4	6 8					
Total W	ell Depth:			Depth to	Depth to Water 47.71							
Depth to	Free Prod	luct:		Thickness	Thickness of Free Product (feet):							
Reference	ced to:	(PVC)	Grade	Flow Cel	Flow Cell Type: YSI 556							
Purge Metl Sampling M Flow Rate:	Method:	2" Grund Dedicated	-	77 * 28 8 8 8	Peristaltic New Tubir Pump Depi	*	Bladder Pump Other					
Temp. Cond. Turbidity D.O. ORP Water Removed (mS or \(m\)S) (NTUs) (mg/L) (mV) (gals. or mL) DTW												
0858	24.73	6.72	918	734	2 97	162.1	10,000	5041				
0908	24.92	6.56	908	280	3.02	-152.4	20,000	50.02				
0918	24.74	6.57	903	2/6	3 09	146.3	30,000	50.10				
0928	24.57	6.50	884	227	3.09	-131.9	40,000	50.07				
0938	24.60	6.52	48 O	190	3:10	-134.7	50,000	50.05				
7948	24.61	6.50	880	130	3.00	-132.9	60,000	49.42				
1958	24.53	6.51	878	123	2.99	-1322	70,000	49.75				
1008	24.67	6.59	875	104	3.03	-140.2	80,000	49.90				
018	24.55	6.58	Ø75	107	2.99	-139.c	90,000	49.86				
021	24.65	6.59	874	99	3.00	-140.2	43,000	49.82				
024	24.70	6.61	874	104	3.01	-141.6	96,000	49.84				
id well o	dewater?	Yes /	No)		Amount a	ctually e	vacuated: 10	OL				
ampling	Time: /	028		117. T.			2/1/07					
ample I.I	D.:Grab-	1- por	1 P		Laborator	у: 🗸 Ді	Science					
nalyzed	for:	трн-с	втех мтві	E TPH-D		<u></u>	See 5.0.w.					
quipmen	t Blank I.L).:	@ Time		Duplicate							

LOW FLOW WELL MONITORING DATA SHEET

Project	#· \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		TLOW W)			UDAIA	SHEEL		
Project 7		129-5	/ (Client:	EKI	1	······································		
Sampler	•		Dr~	Start Date	01/24	/07 			
Well I.D).: Grab	, -2 (s)	urlace)	Well Diar	neter: (2) 3 4	6 8		
Total W	ell Depth:			Depth to	Water	5340)		
Depth to	Free Prod		-4	Thickness	of Free P	roduct (f	eet):		
Reference		(PVC)		Flow Cell	Flow Cell Type:				
Sampling N		Dedicated	d Tubing	iven gauged.	Peristaltic New Tubir		Bladder Pum Other	PDisposable Baller	
Flow Rate:	<u> 2 gal</u>	/min.			Pump Dept	h: <u>58'</u>	(2" Grand Gus)		
Time	Temp.	рН	Cond. (mS or (xS))	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW	
1145	20.75	7.55	2202		5.52	-91.8	3 901	53.38	
1200	Star	PAT	pump						
1325	20.08	7.37	1422	71000	8.34	-47.5	49 901	53.36	
1330	start	2" 9	rundfos p	ump (start F	1	1343)		
1348	22.15	7.09	1512	>1000	6.00	57.4.	60 gal	53.81	
1353	27.11	7.11	1456	446	5-71	-66.1	70 gel.	53.80	
/358	22,08	7.10	1446	72	5.62	-65.6	Bogal.	53.62	
1403	(jouer	flow	rate to	500mL/	min		7		
1403	22.02	7.03	1394	116	5 05	-59.4	90 gal -	53.46	
1408	22,88	6-99	1407	48	4.97	-58,4	+2500mL	53.48	
1413	22.94	6.98	1410	3 i	4.94	-56-2	45000AL	53.44	
Did well d	lewater?	Yes /	No)		Amount a	ctually e	vacuated: 3	gal	
ampling	Time: /	145	14				52/1/07		
ample I.I	D.: Grab	-2-50	orf Gra	6-2-pamp	Laborator	y: کااع	cience		
malyzed	for:	TPH-G	втех мтві	E TPH-D	!	Other: Se	e s o. w		
quipment	t Blank I.I).:	@ Time)	Duplicate	I.D.:			

	10***	DOW W	LLMON	TOPIN(G DATA	SHEET	DAGELOF			
Project #: 0704	02-571		Client: E	KI						
Sampler:			Start Date	: 4-02-1	07					
Well I.D.: PPGL	1\A		Well Dian	neter: ②	3 4	6 8				
Total Well Depth			Depth to V	Water 47	3.35					
Depth to Free Pro	duct:		Thickness	of Free P	roduct (fe	eet):				
Referenced to:	PVC	Grade	Flow Cell	Flow Cell Type: Y5L 556						
Purge Method: Sampling Method:	2" Grundi Dedicated	•		Peristaltic I New Tubin	-	Bladder Pump Other_	PAD			
Flow Rate:			*	Pump Dept	h: <u>53` ;</u>	Sa dadprant				
Temp. Time 🕜 or °F) pH	Cond. (mS or AS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW			
1258 S	start Pu	rge n/	PAD pon	pez	531-					
1321 2453		1338	71000	6.27	24,9	4	51.29			
1325 - Shi	Hoffp	up to	determine	rechase	rate	dianine damen	wickly			
				, and the second		0	/ /			
1344 23.49	8.14	1268	71000	3,90	18,9	5				
1345-5	Hopped	Purge	, Ma	ed on	to nex	twell -				
1233 Bega	Puge	~ /PAD.	rump sete	a 50°	0	TB=5403	43.31			
1240 23.37	8.14	1266	71000	5.41	60.1	2,5	50.50			
1245 23.31	8.35	1255	71000	7.29	3 4 ,9	3,5				
+ Well	Dry, U	Anoble to pu	rge w/lock	ofrecha	se Sta	pad Purgo-	51.25 10:54.4			
Did well dewater?		No '				vacuated.	10-21/1			
Sampling Time:		V 300 100 100 100 100 100 100 100 100 100		Sampling	Date:					
Sample I.D.:	<i></i>			Laborator	ry:					
Analyzed før:	TPH-G	втех мт	BE TPH-D		Other:					
Equipment Blank	.D.:	(a) Time		Duplicate	: I.D.:					

WELL DEVE LOPMENT RING DATA SHEET Dage 106 3 Project #: 070102-St1 Client: EkI Sampler: 51 Start Date: + 150 01 Well I.D .: Ppbu-2 Well Diameter: (2) 3 6 8 Total Well Depth: 65.90 Depth to Water 53.84 Depth to Free Product: Thickness of Free Product (feet): Referenced to: Flow Cell Type: YSI 556 PVC Grade PA D Purge Method: 2" Grundfos Pump Peristaltic Pump Bladder Pump Sampling Method: **Dedicated Tubing** New Tubing Other Flow Rate: Pump Depth: Temp. Cond. Turbidity D.O. ORP Water Removed Time (Cor °F) pН (mS or (CS) (NTUs) (mg/L)(mV) (gals, or mL) DTW purge started plump, plump depth 1 6+ 1045 pad 1593 >1000 1054 21.78 7.47 2.37 -169.5 5 56.60 1256 1103 7.36 >1000 3,79 -142.5 21.77 10 57.05 1112 21.76 4.03 7.38 1229 71000 -133,3 58,10 15 1130 20 4.83 21.82 7.30 1121 >1000 -105.2 58.40 4.9.9 21.86 1130 7.33 71000 25 100 -105.6 58.50 30 purge Stopped 1158 Pyrac Me Sumed 7.30 1091 1000 5.53 22.11 1204 1.59-30 57.50 F - 864 5,83 1213 7.39 1058 17.08 71000 35 58.10 5.25 1077 >1000 -683 1223 21.85 7.27 58,70 Did well dewater? Yes No Amount actually evacuated: Sampling Time Sampling Dates Sample I.D.: Laboratory: Analyzed for: TPH-G BTEX **MTBE** TPH-D Other: (a) Equipment Blank I.D.: Duplicate I.D.: Time

WELL DEVEND PM ENT

p			KI U A COLLEGE			P DATA	SHEET 🖂	nge 2 0 6 3			
Project #	Project #: 070402 - St (Client: EkI										
Sampler:	5+			Start Date	: 4/1/0-	!					
Well I.D	.: PPbW	-2		Well Dian	neter: ②	3 4	6 8				
Total We	ell Depth:	65.90		Depth to V	Depth to Water 53.84						
Depth to Free Product: Thickness of Free Product (feet):											
Referenc	ed to:	PVC	Grade	Flow Cell Type: YSI 556							
Purge Meth Sampling M		2" Grundf Dedicated	-		Peristaltic I New Tubin	•	Bladder Pump Other	PAD			
Flow Rate:					Pump Dept	h:					
Temp. (Cor °F) pH Cond. Turbidity D.O. ORP Water Removed (mS or (#S) (NTUs) (mg/L) (mV) (gals. or mL) DTW											
1231	21.90	7,20	1076	431	5.54	0.45-	45	58,90			
1240	22.01	7.19	150	345	5.63	-41.4	50	58,90			
1251	22.20	7.20	1065	83	5.23	4.0H-	55	58,90			
1301	22.11	7.21	1065	53	5,34	-34.3	60	58,50			
*	Pu	198 S	topped	to sus	tch to	blacke	- pump				
1326	P	orge r	esumed				odepth n b	2'—			
1331	22.21	7:15	1082	71000	5.91	-46.2	2,500	54.95			
1336	22.11	7.17	1801	657	\$.99	-16.1	5,000	54.75			
1341	22.20	7.12	1079	428	5.93	H24-	7,500	54,50			
1346	22,15	7.11	1078	281	5,99	-45.5	[0,000	54,40			
1351	22.11	7.11	1077	240	6,00	-46.2	12,500	54.30			
Did well o	lewater?	Yes	No		Amount a	ctually e	vacuated:				
Sampling	Sampling Time: \ Sampling Date:										
Sample I.I	Sample I.D.: Laboratory:										
Analyzed	nalyzed for: TPH-O BTEX MTBE TPH-D Other:										
Equipmen	t Blank I.I	D.:	@ Time		Duplicate	LD:					

120 WELLMONTORING DATA SHEET page 3 of 3 Client: EKI Project #: 070402-541 Sampler: Start Date: | 5 07 Well I.D .: PPbw-2 Well Diameter: 2 3 4 6 8 Total Well Depth: 65.90 Depth to Water 53.84 Depth to Free Product: Thickness of Free Product (feet): Referenced to: Flow Cell Type: YSI 556 PVC Grade Purge Method: 2" Grundfos Pump Peristaltic Pump Blander Bump Sampling Method: **Dedicated Tubing** New Tubing Other Flow Rate: 500 ml/min 162 Pump Depth: Temp. Cond. **Turbidity** D.O. ORP Water Removed ((O) or °F) Time (mS or \muS) pН (NTUs) (mg/L)(mV) (gals, or (fil)) DTW 22,19 1013 7.13 1356 6.09 -50,9 54.30 15 000 172 7.13 6.10 -55.9 10/1 22.19 1072 108 17,500 54,25 86 1106 -543 22.73 7.13 6.11 20,500 070 54.25 22,20 111 -52.6 54.20 62 7,13 6.12 1068 22,500 22.24 1416 1068 48 6,17 54.20 7.13 -50,3 25 000 38 22,17 6,20 -50,0 1421 7.13 1069 27,500 54.20 TD=66.05 Did well dewater? Yes No Amount actually evacuated: Sampling Time: 1425 Sampling Date: 4/5/67 Laboratory: (alscrence Sample I.D.: PP6w-2 Analyzed for: Other: See Son TPH-G BTEX MTBE TPH-D Equipment Blank I.D.: Ets-1 @ Duplicate I.D.: DUP-4

OW FLOW WELL MONITORING DATA SHEET Page 1 of's Project #: 070402-\$41 Client: EKI 4/6/07 Sampler: Start Date: Well I.D .: PPbw-3 Well Diameter: $\binom{1}{2}$ 3 4 6 8 Total Well Depth: 65.11 Depth to Water 57.80 Depth to Free Product: Thickness of Free Product (feet): Referenced to: YSI 556 **PVC** (frade) Flow Cell Type: Purge Method: 2" Grundfos Pump Peristaltic Pump Bladder Pump Sampling Method: **Dedicated Tubing** New Tubing Other Flow Rate: Pump Depth: Temp. Cond. **Turbidity** D.O. ORP Water Removed Time (°C) or °F) pН (mS or (IS) (NTUs) (mg/L)(mV) (gals. or mL) DTW @162° 1306 w / PAH Purge Stan ted PUMP 1423 -191.2 1517 7,57 1000 2.58 22.72 5 56,23 1525 21.95 058 1000 7.48 3,80 -172.7 10 56.40 1535 7.44 962 21.86 -181.3369 >1000 15 56.70 901 1844 21.85 7.37 -162.5 3.80 573 20 56.70 1554 876 4.45 21.95 7.37 71000 -1502 56,80 25 1602 30 7.35 1000 2196 4.69 867 -131.3 56.80 7,32 872 1612 21.91 35 56.80 4,54 -119.0 490 pump raise 7,34 PS 8 1623 -90.5 21.66 1000 40 5.09 to 1508 1637 845 5,10 -85.6 56,70 21.54 7.30 251 Pump landered 1641 856 384 -78.9 71.39 9,15 7.28 **5**0 10163 Did well dewater? Yes No Amount actually evacuated: Sampling Time: Sampling Date: Sample I.D.: Laboratory: Analyzed for: TPH-G BTEX **MTBE** TPH-D Other: Equipment Blank I.D.: QCERFilte @ Duplicate I.D.:

10NITORING DATA SHEET Page 2 of 3 Project #: 070402 St1 Client: EKI Start Date: 4/6/07 Sampler: \hookrightarrow Well I.D .: PP6W-3 Well Diameter: (2) 3 6 8 Total Well Depth: 65.11 Depth to Water 53.80 Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVC Grade Flow Cell Type: YSI 556 Purge Method: 2" Grundfos Pump Peristaltic Pump Bladder Pump Sampling Method: **Dedicated Tubing** New Tubing Other Flow Rate: Pump Depth: Temp. Cond. Turbidity D.O. ORP Water Removed (°C)or °F) Time pН (mS or μ S) (NTUs) (mg/L)(mV)(gals. or mL) DTW 21.29 850 1650 145 5,30 7.28 56,70 -72,5 55 7.27 355 5,22 7,80-1659 21.31 60 56,70 101 Stopped Durge 5cont/min 2581 @ W/Bladder pump @ 2180 recumell 816 21090 20.72 7.05 135.9 0817 3.47 2,500 51.00 818 20.80 7.29 >1000 3.37 0822 72.2 5,000 54.00 0827 873 7.34 336 20.82 3,24 54.03 113.6 7,500 827 104.8 20.83 7.33 0832 3.28 511 10,000 54.03 833 0837 20.88 7.32 3,27 97.4 302 54.02 12,500 0842 20,90 7.32 3.30 90.8 337 212 15,000 1430 20,88 838 3,33 8.48 1.32 157 17,500 11 Did well dewater? Yes No Amount actually evacuated: Sampling Time: Sampling Date: Sample I.D.: Laboratory: Analyzed for: TPH-G **BTEX** MTBE TPH-D Other: (a) Equipment Blank I.D.: Duplicate I.D.: Time

DATA SHEET page 3 of 3 EKI Project #: Client: 070d07-St1 Start Date: 1 10 07 Sampler: Well Diameter: (2) Well I.D.: PPbw-3 3 4 6 8 Depth to Water 53.80 Total Well Depth: 65.11 Thickness of Free Product (feet): Depth to Free Product: Flow Cell Type: YSL 556 Referenced to: PVC drade) Bladder Pump Peristaltic Pump Purge Method: 2" Grundfos Pump New Tubing **Dedicated Tubing** Other Sampling Method: 500 ml /man Flow Rate: Pump Depth:_ Cond. Temp. ORP **Turbidity** D.O. Water Removed (C)or F) Time (NTUs) (mg/L)(mV) (gais. or pfL) DTW pΗ $(mS \text{ or } \mu S)$ 3.38 20.90 838 177ilb 8.03 7.32 54,02 20,000 0852 3.45 54,02 20,83 840 73.7 72,500 7.34 87 0857 1 148 3.46 69.8 25,000 20.88 59 7.34 0902 11 64,6 3.49 842 7.32 47 21,500 0901 20.85 M9 Did well dewater? Yes Amount actually evacuated: Sampling Time: 0910 Sampling Date: 4 6 07 Sample I.D.: PP6 W-3 Laboratory: (a Science Other: See sow Analyzed for: TPH-G **BTEX MTBE** TPH-D (a)

Duplicate I.D.:

Time

Equipment Blank I.D.:

- WEN DEVENOPMENT -

WELL MONITORING DATA SHEET Dage (of 2 Project #: 070402-Sf1 Client: EKI Sampler: 27 Start Date: 4 4 01 Well I.D .: PPGW-4 Well Diameter: (2) 3 4 6 8 Total Well Depth: 57.38 Depth to Water 47.66 Depth to Free Product: Thickness of Free Product (feet): Referenced to: **PVC** Grade) Flow Cell Type: YSI 556 Purge Method: 2" Grundfos Pump PAD Peristaltic Pump Bladder Pump Sampling Method: **Dedicated Tubing** New Tubing Other Flow Rate: Pump Depth: Temp. Cond. Turbidity D.O. ORP Water Removed Time ((C)or °F) pН (mS or KS) (NTUs) (mg/L) (mV) (gas. or mL) DTW 0818 8 fort Durge in PHD pump 20,58 0830 7.19 4.17 5 2154 >1000 47.86 70,3 1180 21.18 7.05 1583 71000 5,00 45.0 (0 48.14 21.08 1486 71000 7.01 5,21 0851 <u>-5.0</u> 48,15 15 1306 0900 21.13 71000 7.62 5.35 -35.0 48.16 20 1258 0909 21.20 6.98 >1000 -34.3 5.38 43,16 25 1221 -58,3 21.65 638 P196 697 48,12 545 30 6.97 21.77 0927 1206 370 -55c 5,71 35 48,12 21.80 1190 40 0936 7,00 >1000 -73.7 5.54 18,12 21.79 7.00 1184 0944 -39.6 102 5.27 45 48,12 -46.5 1176 0954 295 21.66 6.98 5.40 50 48,12 Did well dewater? Yes No Amount actually eyacuated: Sampling Time: Sampling Date: Sample I.D.: Laboratory: Analyzed for: TPH-G BTEX **MTBE** TPH-D Other: (a) Equipment Blank I.D.: Duplicate I.D.: Time

WOU DEVENIFMENT DATA SHEET Page 2062

Project #	#: 0704	02-9+1		Client: ELI						
Sampler	: 56			Start Date	: 4/4/	07				
Well I.D	:: PP6U	v -4		Well Dian	neter: Ø	3 4	6 8			
Total We	ell Depth:	9738		Depth to	Water 4	7.66				
	Free Proc			Thickness			eet):			
Referenc	ed to:	PVC	Grade		Flow Cell Type: YSL 556					
Purge Meth Sampling N Flow Rate:	Method:	2" Grundi Dedicated	•		Peristaltic Pump New Tibbing Other Pump Depth:					
Time	Temp.	рН	Cond. (mS or (18)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW		
1803 21.65 6.96 1171 162 5.23 -47.0 55 48,										
1012	21-65	6,95	1166	225	5.11	-47.5	60	48.12		
	purq	Stop	zed to	switch.	to plac	ler pu	M D			
1046		pladde	i i	-1 1 1	1 .	500 ml/	•			
1051	21.70	6.97	1174	549	5.45		2,500 M	49.90		
1056	21.69	6.94	1176	274	5.37	46.5	5,000	17.71		
1011101	21,73	6.94	FLN	261	5,34	-55.2	7,500	47.70		
1106	21.69	6.94	1184	134	5,27	-61.6	10,000	47.70		
[[1]	21.64	6,93	1189	78	5.27	-61.9	12,500	47.70		
1116	21.62	6,93	1189	56	5.24	-61.7	15,000	47.70		
i125				47						
Did well o	dewater?	Yes (N		Amount a	ctually e	vacuated:			
Sampling	Time: []	25			Sampling	Date: 4	14/07			
Sample I.I	D.: PP61	W-4		Laboratory: Calscience E TPH-D Other: See Sow						
Analyzed	for:	TPH-G	втех мтв	E TPH-D		Officer: S	el Son			
Equipmen	t Blank I.I	D.:	@ Time	Duplicate I.D.:						

		LOW	LOW W	SEL MON	HORIN	-DATA	SHEET	PAGE	of		
Project	4:07040	2-571		Client: [EKI						
Sampler	: M			Start Date	: 4-10-	77					
Well I.D	1. PPGW	5		Well Dian			6 8				
3			B (Starkes depth	Depth to	Water 4	5,55			1		
)	Free Prod		- 0 /	Thickness			eet):		7		
Reference	ed to:	PVC	Grade	Flow Cell	Type:	45L 9	556		\exists		
Purge Meth Sampling N		2" Grundi Dedicated	-		Peristaltic I New Tubin	•	Bladder Pump Other	PAD			
Flow Rate: Pump Depth: 254											
Time	Temp.	pН	Cond. (mS or (S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
1005	- Beija	Pura	~/PA	D pump	iete x	54"			1		
1011	21.25	7.30	990	71000	5.55	26.1	5	46.20	1		
1017	21.49	7.21	975	71000	3,54	21,5	10	46.07			
1024	21.34	7.17	973	71000	3.68	22.4	15	46.01			
1030	21.50	7.16	966	71000	3.53	24,3	20	45.97	59 Wf		
1036	21.52	7,17	964	71000	3,59	22,9	25	45.94]′′		
1042	21.50	7.19	959	71000	3,75	22,8	30	45.97	Jan Dun		
1048	21,58	7.19	961	71000	3,87	19.4	35	45.98	7.5		
1054	21.38	7,48	954	71000	11.15	29.7	40	45,90	1		
1100	21,50	7.69	951	71000	1101	33.7	45	45.97			
1105	21,41	7,59	952	229	11.89	38,5	50	46,05			
Did well o	lewater?	Yes	No		Amount a	ctually ev	vacuated:				
Sampling	Time:			,	Sampling	Date:					
Sample I.I	D.:				Laborator	y:					
Analyzed	for:	TPH-G	втех мтві	E TPH-D		Other:					
Equipmen	t Blank I.I	D.:	@ Time *		Duplicate	LD.:					

		POMI	LOW WIL	NA DAMINA	TOMMO	DATA S	SHEET	PAGE LOT				
Project #:	07040	Z-STI		Client: E	KI							
Sampler:	CM			Start Date	4-40-1	77						
Well I.D.	: PPGWS	<i>/</i>		Well Diam	neter: 🕏	3 4	6 8					
Total We	ll Depth: 5	55,68		Depth to V	Depth to Water 45.55							
Depth to	Free Produ	ıct:		Thickness of Free Product (feet):								
Reference	ed to:	PVC	C(fails	Flow Cell	Flow Cell Type: YSI 556							
Purge Metho Sampling M Flow Rate:	ethod:	2" Grundf Dedicated	-		Peristaltic Pump Bladder Pump PAD New Tubing Other Pump Depth:							
Temp. Time Cond. Turbidity D.O. ORP Water Removed (mS or μS) (NTUs) (mg/L) (mV) (gals/ or mL) DTW												
1111	21.64	7.18	953	- 67	8.11	33.5	55	45.85				
1118	21.72	7,26	955	171	4,85	Z3,0	60	45.88				
1125	21.74	7.24	955	142	4.21	21.7	65	45,87				
1132	21.72	7.27	957	70	450	19.2	70					
	Stoppad	Durge	to sw	itch to	bladder	furp.						
1159	Began	1 ~	~/bladd	B/ DUMD	set e		(= 500 a Yash -					
1204 1204	21.97	7,31	970	120	3.11	6.7	2500 mL	45.63				
1209	21.85	7.27	964	122	2.82	-3.8	5000 mL	45.61				
1214	21.81	7.25	963	87	Z.90	-58	7500 nL	45.61				
1219	21.81	7,25	963	80	2.97	-6.4	10,000 mL	45.61				
1224	21.81	7.25	961	47	3.03	-6.1	12,500 L	45,62				
Did well	dewater?	Yes	No		Amount	actually e	evacuated:					
Sampling Time: Sampling Date:												
Sample I.	D.: /				Laborato	ry:						
Analyzed	for:	TPH-G	втех мт	BE TPH-D		Other:						
Equipmen	nt Blank I.	D.:	(a) Time		Duplicate	e I.D.:						

r		400	ELOW W	LLMON	Holan	DATA	SHEET	PAGE 30F		
Project #	t: 07040	2-ST		Client:	KI			white will be a second		
Sampler	: CM			Start Date	: 4-10	-07				
Well I.D	: PP6W	5		ľ		,	6 8			
1	ell Depth:	_		Depth to V		_				
Depth to	Free Prod	uct:	_	Thickness	of Free P	roduct (fe	eet):			
Referenc	ed to:	PVC	Grade	Flow Cell	Type:	YSI	-556			
Sampling M	od: fethod:	Dedicated	Tubing		Peristaltic I New Tubin	g	Bladder Rump Other_			
Flow Rate:	= 500	1 /mp			Pump Depti	h:	31			
Time	Temp.	pН	Cond. (mS or (us)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or InL)	DTW		
1279 21.95 7.25 961 46 3.18 -9.4 15,000 45.62										
1234	21.91	7.26	962	30	3.14	-10.4	17,500	45.62		
1239	21.93	7.26	962	29	3.09	-97	20,000	4562		
						\				
							10=570	8		
						L				
Did well d	ewater?	Yes (No.		Amount a	ctually ev	vacuated:			
Sampling '	Time: \2	45			Sampling					
ample I.L	D.: PPG	w5			Laborator	()	share			
Analyzed f			втех мтві				e 5.0.W,			
Guipment	Blank I F) ·	@	1	Dunlicate		107			

	EUW.			TONE	DATA	SHEET	PAGE	laf			
#: 0704c	12-St1		Client: E	KI				1			
: CM			Start Date	: 4-10-	07	•					
:. PPGW	16		Well Diar	neter: (2)) 3 4	6 8					
ell Depth:	71.90	(Startin deak	Depth to	Depth to Water 63.72							
		· 0 1	Thickness								
ed to:	PVC	Trade	Flow Cell	Type:	YSI	556					
od: 1ethod:		-		_		Bladder Pump Other					
				Pump Dept	h:						
Temp.	рН	Cond. (mS or $\widehat{\mu}$ S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW				
- Be	lan Pi	re w	PAD O	no sofa	27	`					
22.42	7,45	994 /	71000	7.45	112,4	5	66,50				
21.94	7.35	989	71000	6.64	64.2	10					
21.69	7.34	987	Z09	6.25	56.0	15	66,10	lake purp toxl			
21.73	7,92	768	71000	9,90	43,1	20	66.22	77056			
21.66	7,39	985	120	6.92	47.3	25					
21.65	7,38	980	<i>5</i> 7	7.00	48,4	30	66.19				
21.68	7.37	981	101	6.86	48,8	35	66 23				
21.61	7,34	983	66	6,34	50.7	40	2	pung			
21.66	7,32	984	124	6.46	49,1	45	66.17	†* 71			
21.63	7,33	982	71	6.82	49,4	50	66,19				
lewater?	Yes	No	•	Amount a	ctually e	vacuated:					
Time:				Sampling	Date:						
Sample I.D.: Laboratory:											
for:	ТРН-G	втех мтв	E TPH-D	****	Other:						
t Blank I.I	D.:	(a) Time		Duplicate	I.D.:						
	E. C.M. E. PPG. M. Ell Depth: Free Product to: Indicated to:	ECM EPPGW6 Ell Depth: 71.90 Free Product: Eed to: PVC Temp. Cor°F) pH Reyan P. 27.42 7.45 21.69 7.34 21.66 7.39 21.65 7.38 21.65 7.38 21.66 7.37 21.66 7.37 21.66 7.37 21.66 7.37 21.67 7.34 21.68 7.37	#: 070407-STI : CM :: PPGW6 :: PPGW6 :: PVC	Client: E CM Start Date CM Start Date CM Start Date Well Diar Pree Product: Ed to: PVC Fade Cond. C	Start Date: 4-10-10-10-10-10-10-10-10-10-10-10-10-10-	Client: EK Start Date: 4-10-07	Start Date: 4-10-07 Well Diameter: ② 3 4 6 8	Client: EK Start Date: 4-10-07 Well Diameter: (2) 3 4 6 8 Ell Depth: 71.90 (shocks depth Peristaltic Pump Peristaltic Pump Pump Depth: Pump			

PAGEZOFZ HTORING DATA SHEET Project #: 070402 STI Client: Sampler: UM Start Date: 4-100-07 Well I.D.: PPGW6 Well Diameter: 6 8 Total Well Depth: 71.90 (state dept Depth to Water 63.72 Depth to Free Product: Thickness of Free Product (feet): Referenced to: PVC Grade Flow Cell Type: YSI Purge Method: 2" Grundfos Pump Peristaltic Pump Bladder Pump Sampling Method: Dedicated Tubing New Tubing Other Flow Rate: = 500 mL/mm Pump Depth: 268 Temp. Cond. **Turbidity** D.O. ORP Water Removed or °F) Time (mS or AS) pН (NTUs) (mg/L) (mV) (gals. or mil) DTW Puge ~ 455 adder pump set p \$ 66' = 500 m Ymin. 7.36 1500 2246 936 14.85 10.58 540 2500 22.16 936 1505 7.38 22 55.9 5000 64.94 10.63 936 50 2192 7.45 59.7 br/B 64.90 7500 10.38 1515 2192 936 7.52 129 65.01 52.7 10,000 W.28 45 570 21.89 937 10.35 35.1 743 65.05 2,500 7.36 Z1.90 525 35 936 65,07 40.8 5,000 10.25 1536 21.88 7.34 936 43 65,07 10.30 428 17,500 1535 936 65.08 2193 7.32 30 10.19 20,000 445 (No) Did well dewater? Yes Amount actually evacuated: Sampling Time: 1540 4-10-07 Sampling Date: Sample I.D.: PPGW6 Laboratory: Calscience Analyzed for: TPH-G BTEX MTBE TPH-D Otfigr: Sec SDW \widehat{a} Equipment Blank I.D.: Duplicate I.D.: Time

- WELL DEVENUPMENT -

						DAIA	SHEET MO	10 10+3	7			
Project #:	0700	102-8	t <u>1</u>	Client: E	EKT							
Sampler:	84			Start Date	: 4 [4]	07						
Well I.D.	: PPb	w-7\$		Well Dian	neter: (2)	3 4	6 8	-				
Total We	ll Depth:	60,70)	Depth to V	Depth to Water $\sqrt{7.61}$							
Depth to	Free Prodi	uct:		Thickness	Thickness of Free Product (feet):							
Reference	ed to:	PVC	Grade	Flow Cell	Type:	122 55	76					
Purge Methor Sampling M Flow Rate:	ethod:	2" Grundf Dedicated	•		Peristaltic F New Tubing Pump Depti	g	Bladder Pump Other					
Tion raise,					T	·			}			
Time	Temp.	pН	Cond. (mS or as)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW				
1245	<	tart	Durge	w/PAI	D pump		Pumpda	eptn 2 58	(
i256	23.45		1202	>1000	1,62	-126.1	5	47,70				
1307	28.62	7.38	1248	>1000	3,90	-167.8	(0	47.73				
1316	22.23	7.28	1145	> 000	4.75	-132.1	15	47.73	1			
1325	22.93	7,62	1107	>(000	6,30	-46,7	20	to 150'	ed			
1234	22.13	7.25	1101	>(000	5.17	- 82,2	25	47,75				
1344	22,15	7.26	11	>1000	9,44	_97.1	30	47,75	ĺ			
1353	27.18	7.25	1113	>1000	5,31	-98.6	35	17.75 ion	np			
404i	22.16	7,26	1108	778	5.43	-98.6	40	47.76	<i>~</i> \(\(\)			
415	22,11	7.30	1109	262	5.60	-107	45	17.76				
1/26	22,50	7.30	1106	93	15.40	-117.5	50	17.76				
Did well d	lewater?	Yes	No	\	Amount a	actually e	vacuated:					
Sampling Time: \Sampling Date:												
Sample I.D.: Laboratory:												
Analyzed	for:	ТРН G	BTEX MTE	BE TPH-D		Other:		\				
Equipmen	t Blank I.	D.: \	@ Time		Duplicate	e I.D.:						

		Lo₩	FLOWW	ELI MON	TORIN	G DATA	SHEET DO	Gr 206 2			
Project ?	4: 0704	102-54		Client:							
Sampler	: 34				e: 1/4/	D.7					
Well I.D).: PP6	u-7度		Well Dia	Well Diameter: 2 3 4 6 8						
Total W	ell Depth:			Depth to	Depth to Water 47.61						
Depth to	Free Proc	luct:			Thickness of Free Product (feet):						
Reference	ed to:	PVC	Grade		Type: /						
Purge Meth Sampling N		2" Grundi Dedicated	-		Peristaltic Pump New Tubing Other						
Tion Rate.		1/21: 1	<u> </u>	7	Pump Dep	th:		· · · · · · · · · · · · · · · · · · ·			
Time	Temp.	pН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
1445	- 3	witch	to bla	dder p	ump, 1	urged (a scont/min	pump depti			
1922	22.13	7.39	1101	71000	6,65	-105,2		47.68			
1900	22.08	7.33	1098	71000	5,80	-112.4		11			
1505	21.99	7.31	1099	71000	9,51	-1167		17			
1510	22.04	7.31	1101	>1000	5.35	-129.3		11			
1515	22.03	7.30	1104	791	5.03	-13/19	12,500	(1			
[520	22.09	7.28	1102	656	4.91	. (37,0	15,000	И			
1525	21.94	7.26	1100	141	4.71	-136.6	17,500	11			
1530	21.88	7,24	1100	373	4.68	-1363	20,000	£1			
1535	21.92	7.24	1099	398	4.62	-136,8	22,500	<i>(</i> (
1540	21.87	7.23	1099	299	4,53	-137.4	25,000	Ü			
Did well d	lewater?	Yes]	No		Amount a	ctually e	vacuated:				
Sampling	Time:			\	Sampling	Date:	\				
Sample I.I	D.:				Laborator	y:					
Analyzed	for:	три-с	втех мтв	E TPH-D		Other:					
quipment	t Blank I.I	D.:	@ Time		Duplicate	I.D.:					

LOW FLOW WELL MONITORING DATA SHEET page 3 of 3 Project #: 070402-941 Client: EKI 84 Start Date: 4/4/07 Sampler: Well I.D.: PPOW _7 Well Diameter: (2) 3 6 8 Total Well Depth: 60,70 Depth to Water 47.61 Depth to Free Product: Thickness of Free Product (feet): Grade Flow Cell Type: YSI 556 Referenced to: PVC Purge Method: Peristaltic Pump Bladder Bump 2" Grundfos Pump New Tubing Sampling Method: **Dedicated Tubing** Other 500 ML/min Flow Rate: Pump Depth: Temp. Cond. **Turbidity** D.O. ORP Water Removed (Cor °F) Time (mS or us) pН (NTUs) (gals. or (L)) (mg/L)(mV) DTW 100 231 4.55 7.23 27,500 47.70 シャシ 21.93 -1378 1550 21.95 7.21 1100 4.52 30,000 74 -137.3 47.70 7.21 21.89 099 4,53 (555 170 -136.1 32 500 21.84 Ü 7.20 1600 141 4,56 ~ (35,5 35,000 1099 1605 20 105 21.79 7.19 1099 4,42 -135.7 37,500 14.4 11 1098 27 1610 7.18 -134.7 21.72 90 000 63 1615 Did well dewater? No Amount actually evacuated: Yes Sampling Time: 1615 Sampling Date: 4/4/07 Sample I.D.: PP6W-7 Laboratory: Calscience Analyzed for: Other: See Sow TPH-G BTEX MTBE TPH-D (a)

Duplicate I.D.:

Time

Equipment Blank I.D.:

LOW FLOW WELL MONITOPING DATA SHEET Page 1 of 2 Client: EkI Project #: 070402-8+1 Start Date: 4 5 07 Sampler: Ct PPbw-8 Well Diameter: (2) Well I.D.: 8 4 6 19.80 Total Well Depth: 62.10 Depth to Water Thickness of Free Product (feet): Depth to Free Product: Flow Cell Type: YSI 556 Referenced to: Orade **PVC** Purge Method: 2" Grundfos Pump Bladder Pump PAD Peristaltic Pump Other Sampling Method: **Dedicated Tubing** New Tubing Flow Rate: Pump Depth: Temp. Cond. D.O. ORP Turbidity Water Removed (mS or (S) (Cor °F) (gals) or mL) Time pΗ (NTUs) (mg/L)(mV) DTW 0740 PAD pump depth 160 DUYGO U Mb 7.24 3.53 5 50,40 20,31 26.4 0750 >1000 1277 0759 3.93 -34.3 1100 >1000 10 26.73 7,11 50.30 -12.3 4.37 15 >1000 50,30 0807 20,75 7.05 1044 50.30 pump raised 1030 0816 20.69 >1000 -6.1 7.02 4.18 20 2.2 1.01 25 0824 7.00 1018 730 50,32 20.78 1008 874 10.2 30 20,66 50,30 0832 6.99 3.76 Purap 12.9 918 35 0180 20.81 6.99 1003 3.75 50.27 1004 4.14 1000 4.12 40 7.00 P130 20.62 50.27 6,99 1003 4.38 0858 20.63 71000 -2.3 45 50,25 1000 4.29 6,99 20,83 251 0906 50, 75 -1.0 50 Did well dewater? Yes Amount actually evacuated: No Sampling Time: Sampling Date: Sample I.D.: Laboratory: Analyzed for: TPH-G BTEX MTBE TPH-D Other: (a)Equipment Blank I.D.: Duplicate I.D.: Time

They well monitoring DATA SHEET page Z of Z Client: EKI Project #: 070402-8+1 Sampler: Start Date: 4 7 0 1 PP6W- & Well I.D.: Well Diameter: (2) 3 4 6 8 Depth to Water 49. 80 Total Well Depth: 67.10 Depth to Free Product: Thickness of Free Product (feet): Flow Cell Type: VSI 556 Referenced to: Grade **PVC** Bladder Pump (PA D) Purge Method: 2" Grundfos Pump Peristaltic Pump Sampling Method: **Dedicated Tubing New Tubing** Other Flow Rate: Pump Depth: Temp. Cond. **Turbidity** D.O. ORP Water Removed (mS or \(\mu \mathbb{S}\)) Time (C)or °F) pΗ (NTUs) (mg/L)(mV) (gals) or mL) DTW 3,8 997 0914 6.99 147 4.13 55 20,84 50,25 995 4.20 6.8 208 0923 20,89 60 6.98 lacker pural Stopped to Switch tot PVMP begin purger ultiliseder pump - pump depth 2561 -0945 1000 0950 6.99 1005 3.76 7,500 20.97 -14.2 50.15 6.98 21.05 263 -165 0955 1003 3,45 5 000 50,15 11 002 6.98 209 7,500 1000 21.05 3,50 -15.5 11 83 -17.8 3.35 2001 6.97 1005 21.19 000 11 -11.9 21.16 6.97 1002 15 3.24 12,500 1010 -22.9 1 (1003 15,000 1015 40 3.30 21.15 6.97 TD: 62.15 (No) Did well dewater? Yes Amount actually evacuated: Sampling Time: 1020 Sampling Date: 4/5/07 Sample I.D.: PPbW-8 Laboratory: Calso lence Other: See sow Analyzed for: TPH-G BTEX **MTBE** TPH-D

Time 0910

Duplicate I.D.: Dut

Equipment Blank I.D.: Eg-1

		TOW	ELOW W	ELLMON	HORM	DATA	SHEET	PAGE LO	たる		
Project	#: <u>07040</u>	2-ST1		Clientick	I						
Sampler				Start Date	: 4-10-	07					
Well I.D	D.: PPGU	19			Well Diameter: (2) 3 4 6 8						
į.			, Statudol	Depth to		5.08					
1	Free Prod		01	Thickness			eet):		1		
Reference	ced to:	ced to: PVC Grade Flow Cell Type: YSI 656									
Purge Meth Sampling N		2" Grund Dedicated	•	Peristaltic Pump Bladder Pump A Din Pump New Tubing Other							
Flow Rate:	-	•			Pump Dept	h: <u>27</u>	2 Suderelpon	ent			
Time	Temp. Cond. Turbidity D.O. ORP Water Removed										
1406.	Bega	Purse	~/PA	D punp -	time	0 36	1				
1431	21,54	8.12	1051	71600	8,16	54.2	5	67.31			
1442	21.27	7.93	1013	71000	8.41	49.4	10	69,65			
1453	21.21	802	1012	278	7.75	41.3	15	69.61			
1502	21.04	7.27	1013	170	3.78	41.1	20	6905	NSVN		
1511	21.17	7.24	1010	386	3,39	38,3	25	67.07	Swar		
1517	21.47	7.18	999	71000	3.00	35,2	30	68.65	Sugar cyffi		
1525	21.33	7.20	1016	71000	3,99	28.7	35	69.01			
1531	21,49	7.15	1006	71000	3.24	31.2	40	68.69	pum 3272		
1539	2096	7.18	1016	195	3,30	37.8	45	68,25	P. 72		
1545	21.13	7.14	1016	- 14	309	35,7	50	68,10			
Did well o	dewater?	Yes	No		Amount a	ctually e	vacuated:	D=76,25	-		
Sampling Time: Sampling Date:											
Sample I.D.: Laboratory:											
Analyzed for: TPH-G BTEX MTBE TPH-D Other:											
Equipment Blank I.D.: Duplicate I.D.:											

			LOWI	LOWWI	LL MON	TORING	DATA	SHEET	16E 20F		
	Project #	:07040	2-571		Client: E	(I			,		
	Sampler:	(h			Start Date:	: 4-10-1	77				
	Well I.D	: PPGW	ን		Well Diameter: ② 3 4 6 8						
				after desperant)	Depth to Water 66,14						
		Free Prod			Thickness			et):			
	Referenc	ed to:	PVC	Grade	Flow Cell	Type:	YSI 55	6			
	Purge Meth Sampling M		2" Grundf Dedicated	•		Peristaltic Pump Bladder Pump New Julyng Other					
	Flow Rate:	2 500ml	1/2h			Pump Depth	1: <u> </u>)`			
	Time	Temp.	рН	Cond. (mS or 🎊)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mt)	DTW		
-10.07	0804.	- Bega	pwae	~/blad	de pump				The state of the s		
	0809	20.67	7.15	1054	121	Z.68	94.1	2500	66.ZO		
	0814	20.79	7.15	1052	145	3.71	77.0	5000	66.18		
	0819	2083	7.16	1049	201	4.73	69.8	7500	66.19		
	0824	20.87	7.15	1044	177	5.16	65.9	10,000	66.20		
	0829	20.90	7.15	1034	134	5.29	651	12,500	66.20		
	0834	2091	7.15	1037	103	4.85	62.2	15,000	66.22		
	0839	21.02	7.16	1032	93	5.47	60.8	17,500	66-20		
	0844	20.98	7.18	1031	86	5,76	59,2	Z0,000	66.20		
	0849	20.95	7.17	1029	99	5,52	57.4	22,500	66,22		
	0854	21.03	7.17	1075	92	5.36	56.6	25,000	66.22		
	Did well	dewater?	Yes	No		Amount a	ictually e	vacuated:	,		
	Sampling Time: Sampling Date:										
	Sample I.	D.:				Laborator	y:				
	Analyzed for: TPH-G BTEX MTBE TPH-D Other:										
	Equipmer	it Blank I.l	D.:	@		Duplicate	íD:	-			

		DOW	TEOW W	SEE MON	IT ORIN	G DATA	SHEET	PAGE 30F			
Project #	#: 07040	2-57/		Client: E	Client: EKI						
Sampler	: Cn			Start Date	Start Date: 4-40-07						
Well I.D	.: PPGWG	 ነ		Well Diar	neter: 🗷	3 4	6 8				
Total Wo	ell Depth:	76.10 (after derboret	Depth to	Depth to Water 66.14						
	Free Prod			1	Thickness of Free Product (feet):						
Referenc	ed to:	PVC	Grage	Flow Cell							
Purge Meth Sampling M	lethod:	2" Grund Dedicated	l Tubing		Peristaltic I New Tubin	Pump	Bladder Tump Other				
Flow Rate: 2 500 ml/mih Pump Depth: 2 70											
Time	Temp.	pН	Cond. (mS or 🎉	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or nt.)	DTW			
0859	21.01	7.16	1025	78	5.74	55.8	27,500	66.23			
0904	21.05	7.19	1024	59	6.13	55.2	30,000	66.23			
0909	21.09	7.18	1024	46	6.12	54.5	32,500	66.23			
0914	21.08	7.18	1020	38	6.05	54.2	35,000	66.23			
0919	21.13	7.19	1019	27	6.17	54.7	37,500	66.23			
id well d	ewater?	Yes (Ño)		Amount a	ctually ev	vacuated:				
ampling	Time: 09	20			Sampling	Date: 4	-10-07				
ample I.I	D.: PPG1	V 97			Laboratory: Colsaece						
nalyzed	for:	TPH-G	BTEX MTBE				ee 50.W.				
quipment	Blank I.D).:	@ Tirne		Duplicate I.D.:						

	***************************************	LUW	FLOW WI	ELL MON	HURIN	DATA	SHEET	PAGE LOF	-		
Project #	‡: 670403	2.571		Client: 🗦	KI				7		
Sampler	: Un			Start Date	: 4-At-	07			1		
Well I.D	.: PPGWI	0		Well Dian	Well Diameter: (2) 3 4 6 8						
Total We	ell Depth:	78.20	(startin dot)	Depth to V	Depth to Water 67.87						
i	Free Prod			1	Thickness of Free Product (feet):						
Referenc	ed to:	PVC	(rade)	Flow Cell	Flow Cell Type: YSI 556						
Purge Meth Sampling M		2" Grundi Dedicated	•		Peristaltic I New Tubin	•	Bladde (Palmp Other	MAD	- -		
Flow Rate:					Pump Dept	h:					
Time	Temp.	pН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW			
0755	-Bego	n purge	~/PAD	puno sel	e 2 7	7.5		76.450	7		
0805	20.38	7.29	1002	71000	7.40	126.9	5	76.45			
0817	20.59	8,11	968	71000	7.78	82.0	10	77.01	4		
0633	Z0.98	7.53	981	71000	6.27	62.8	15	75.09]′*		
0846	21.15	7.40	991	104	3.63	36.1	20	76.30			
0858	21.47	7.40	991	47	3.85	27.0	25	76,97	SUE		
0911	21,43	7.40	984	71000	4.13	23.8	30	76.33	sous pun to a		
0923	21.39	7.43	990	13	4.24	22.7	35	76,35	10%		
0935	21.67	7,39	991	ક	4.17	Z3.5	40	76.41	la.		
0947	21.87	7.37	995	26	4.04	23.3	45	76.49	to?		
0958	21,74	7,30	993	7	4.09	Z6.9	50	76.39	7		
Did well o	lewater?	Yes	No		Amount a	ctually e	vacua te d:				
Sampling	ampling Time: Sampling Date:										
Sample I.I	ample I.D.: Laboratory:										
Analyzed	nalyzed for: TPH-G BTEX MTBE TPH-D Other:										
Equipmen	t Blank I.I	D.:	@ Time	-	Duplicate	I.D.:					

		LOW	FLOW W	ELL MON	ITODIN	G DATA	SHEET	PAGEZ	o F		
Project #	#:07040	2-671		Client: E	EKI			1.11.			
Sampler				Start Date	Date: 4-02-07						
Well I.D	1: PPGWI	D		Well Diar	neter; B) 3 4	6 8	Million			
1	ell Depth:			Depth to V	Water 6	7.87					
Depth to	Free Prod	uct:		Thickness			eet):				
Reference	ed to:	PVC	Grade								
Purge Meth Sampling M Flow Rate:	Method:	2" Grund Dedicated	•		Peristaltic Pump Bladder Cump POD New Tubing Other_						
					Pump Dept	11			7		
Time	Temp.	рН	Cond. (mS or 168)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
1000 -	Stopped,	Dunge -	/ PAD PO	unp to all	w reclan	le, -			1		
1013	_ ~''	1 .~	1	punp sc!	1	\\ \ -		68.57	1		
1026	21.81	7,32	1004	71000	3,44	20.5	55	68.70	المال		
1038	21,90	7.29	994	71000	3,22	9.3	60	72.24	27		
1050	21.87	7.31	989	71080	3.31	10.5	65	73.01	_love to≈		
1101	22,02	732	1001	138	3.46	6.6	70	73.11			
	- Stop	of for	e to 51	witch to	blodder	D crup			1		
1170	- Bega	1 1 U		2 punp so			00 ml/min	68.13	1		
1125	21.52	7.22	1010	691	3.25	125	Z500	67.95			
1130	21,36	7,29	1203	295	4.41	17.3	5000	67.92	-		
1135	21.31	7,28	1254	171	4.68	22,6	7 500	67.94			
Did well o	lewater?	Yes	No		Amount a	ctually e	vacuated:				
ampling	Time:				Sampling	Date:			-		
ample I.I)::				Laborator	y :			1		
Analyzed	for:	TPH-G	втех мтв	E TPH-D		Other:			1		
quipmen	t Blank I.I	D.:	@ Time		Duplicate	I.D.:		:	1		

WELL DEVELOPMENT LOW WELL MONITORING DATA SHEET Project #: 070402-ST1 EKI Client: Sampler: CM Start Date: 4-12-07 Well I.D.: PPGWIO Well Diameter: 4 6 8 Total Well Depth: 78,70 Depth to Water 67.87 Depth to Free Product: Thickness of Free Product (feet): Referenced to: Grade Flow Cell Type: PVC YSI 556 2" Grundfos Pump Purge Method: Bladder Pump Peristaltic Pump Sampling Method: Dedicated Tubing New Tubing Other Flow Rate: Pump Depth: Temp. Cond. **Turbidity** D.O. ORP Water Removed Ø or °F) Time (mS or μS) pΗ (NTUs) (mg/L) (mV) (gals. or fil) DTW 1140 21.30 7.35 1224 4.64 10,000 7.2 21.26 7.29 4.88 1160 22.3 12,500 67.96 1150 30 7,28 1108 4,91 67.94 24.5 15,000 1155 1095 4.83 7.27 21.32 245 17,500 67.94 M=79/70 Did well dewater? **(67)** Amount actually evacuated: Sampling Time: 1158 Sampling Date: 4-11-67 Sample I.D.: PP6410 Laboratory: Colsilere

Analyzed for:

Equipment Blank I.D.:

TPH-G

BTEX

(a)

MTBE

Time

TPH-D

Offiger: See 5.0, W

Duplicate I.D.:

					VIIONA	IG DATA	SHEET	PAGELOF				
Project	#: 0704	102-5	TI		Client: [K]							
Sample				Start Dat	e: 4-09	-07						
Well I.I	D.: PPGu	J 11		Well Dia	Well Diameter: (2) 3 4 6 8							
Total W	ell Depth:	66.7	7 62.27	Depth to	Depth to Water 57.45 53.75							
	o Free Pro				Thickness of Free Product (feet):							
Referen	ced to:	N	Grade		Flow Cell Type: YST 556							
Purge Met Sampling I Flow Rate:	Method:	2" Grund Dedicated	lfos Pump d Tubing		Peristaltic Pump New Tubing Bladder Pump Other							
					Tump Dep	th: start	<u>e ~ 66</u>	<u> </u>				
Time	Temp.	рН	Cond.	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW				
0918	- Star	+ Purge	2 m/PAV	Jemp-			5	purper 66				
0926	20.53	7.45	1722	71000	3.06	126.0	5	59 55.30				
0934	21.18	7.37	1369	71000	3,96	105.4	10	58.905420				
0942	21.19	7.24	1105	71000	4.62	78.7	15	58,57				
0948	21.21	7.21	1127	71000	4.73	74.6	20 8	5437				
0955	21.04	7.19	1101	71000	4.86	70.3	25 2	58,49				
1001	70.88	7.17	1085	71000	5.16	70.8	30	58.57				
1007	21.06	7,19	1077	71000	5,37	72.6	35	58.4Q5420				
1014	2093	7.21	1065	213	6.07	72,4	40	15849 le				
1021	21,09	7.22	1061	101	5.93	71.7	45	58, H539 M				
1026	21.10	7.20	1051	440	5,07	69.2	50	58,09				
oid well d	lewater?	Yes 1	No		Amount a			553.8				
ampling	ampling Time: Sampling Date:											
ample I.I	D.:\				Laborator							
nalyzed for: TPH-G BTEX MTBB TPH-D Other:												
quipment	quipment Blank I.D.: @ Duplicate I.D.:											

	LOW FLOW WELL MONITORING DATA SHEET DAGE 7. F										
Project #	t: 07040	2-ST1		Client:	EKI						
Sampler	: <u>Cn</u>			Start Date	: 4-0 9 -1	7					
Well I.D	:: PP6W1			Well Dian	Well Diameter: ② 3 4 6 8						
Total We	ell Depth:	62.27	7	Depth to V	Depth to Water 53.75						
Depth to	Free Prod	uct:		Thickness	Thickness of Free Product (feet):						
Referenc	ed to:	PVC	(rade)	Flow Cell	Flow Cell Type: YSL 556						
Purge Meth Sampling M	lethod:	2" Grundi Dedicated	Tubing		Peristaltic Pump New Tubing Bladder Pump Other						
Flow Rate:		, ~ 50	O onlyon	-	Pump Deptl	n: <u>265</u>	Si w development	ut_			
Time	Temp.	pН	Cond. (mS or us)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (kal). or mL)	DTW			
1033	21.08	7.21	1052	153	5.14	69.2	55	53.85			
1038	20.95	7.21	1049	86	5,08	70.7	60	53,98			
1045	20.96	7.20	1045	53	5.39	70.8	65	53.95			
1051	21.00	7,20	1040	65	5.45	71.2	70	53.99			
	Stoppad	purge 1	e switch	to bladde	r purp						
1126 -	Reson	ed pure	se ~/bl	odda 0	inf 02	500 mly	min @ 591				
1131	21.36	7.22	1078	71000	4,98	66.9	2500 mL	53,80			
1136	21,29	7.19	1057	555 ·	4.99	65.1	5000 mL	53,82			
1141	21,32	7,17	1047	243	5.05	650	7500 nL	53.80			
1146	21.37	7.16	1037	135	5,09	65.1	10,000 nL	53.80			
1151	21.37	7.16	1037	100	5.19	64.8	12,500 L	53.81			
Did well o	lewater?	Yes	No		Amount a	ctually e	vacuated:				
Sampling	ampling Time: Sampling Date:										
Sample I.I	D.: /				Laborator	y:					
Analyzed	nalyzed for: TPH-G BTEX MTBE TPH-D Other:										
guipmen	t Blank I.I	D.:	@ Time		Du p licate	īn.					

			FLOW	BLL MON	HORIN	S DATA	SHEET	PAGE 34			
Project #	#: 0704	07-51		Client:	EKI			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
Sampler	: cn			Start Date	: 4-0 q	07					
Well I.D	: PPGW	11		Well Diar	Well Diameter: (2) 3 4 6 8						
Total W	ell Depth:	62.27	7	Depth to Water 53,75							
Depth to	Free Prod	luct:		Thickness	of Free P	roduct (f	eet):				
Reference	ed to:	PVC	Grade	Flow Cell	Flow Cell Type: \\ \(\)						
Purge Meth Sampling N	Method:	2" Grund Dedicated	•		Peristaltic Pump New Tubing Bladder Pump Other						
Flow Rate:	<u> 2500.</u>	nl/mih			Pump Dept	h: <u>25</u> 0	I' for samply				
Time	Temp.	рН	Cond. (mS or (CS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
1156	21,37	7.17	1038	54	5.17	63,9	15,000 -L	53.81			
1201	21.31	7.17	1039	46	5.14	63,4	17,500 L				
1206	21,36	7.16	1034	47	5.11	63,3	20,000_L	53.81			
1211	21,32	7.16	1039	36	5.15	641	27,500~L	5381			
							10:	=65.00			
							,				
Did well d	lewater?	Yes ($\widehat{N_0}$		Amount a	ctually ev	/acuated:				
Sampling	Time: \Z	15			Sampling						
Sample I.I	D.: PPG	WII			Laborator	<i>C</i> 1	here				
Analyzed 1			втех мтві				e 5.0.W,				
quipment	t Blank I.E), <u>:</u>	@ Time	I	Duplicate						

- WALL DEVENOPMENT -

TELL MONITORING DATA SHEET page (of 3 Project #: 070401-5t1 Client: EKI Start Date: 4 6 67 Sampler: 4 Well Diameter: (2) 3 6 8 Well I.D.: PP6W-12 Depth to Water 621 54.30 Total Well Depth: 62,40 Thickness of Free Product (feet): Depth to Free Product: Grade) Flow Cell Type: YSI 556 Referenced to: **PVC** PAP Bladder Pump Peristaltic Pump Purge Method: 2" Grundfos Pump Other **Dedicated Tubing** New Tubing Sampling Method: Pump Depth: Flow Rate: Temp. Cond. Turbidity ORP D.O. Water Removed (°O or °F) DTW pΗ (mS or as) (NTUs) (mg/L)(mV) (gals) or mL) Time Par 61' started 1009 V/PAD DUIGO >UMP 94.7 > 1000 54.85 1936 3.18 5 20,17 1019 7.52 54.80 66.7 4,55 7.41 1474 1000 0 1029 20.80 54.80 20.76 1245 51.8 15 7.37 71000 181 1039 pempraisel 7.25 54.50 to 156 43.8 1156 20.77 >1000 1,75 20 1049 7.21 > (000 38,6 25 1106 4.73 1058 20.73 54.50 1091 >1000 5.50 33,2 30 7.20 54,79 20,72 3011 5.33 29.8 54.80 35 036 >1000 1117 20.72 7.18 pump ande 25.2 5.13 40 20.76 1017 1127 7.13 402611 701 5.40 54.80 997 45 1136 20,90 7.11 100 >1000 11 989 1000 5.15 15,6 7.18 1146 20,92 50 Amount actually evacuated: Did well dewater? Yes No Sampling Time: Sampling Date: Sample I.D.: Laboratory: Analyzed for: Other: TPH-& BTEX **MTBE** TPH-D (a) Equipment Blank I.D.: Duplicate I.D.: Time

- WELL DEVENOPMENT

 	· · · · · · · · · · · · · · · · · · ·		2-20 VI VI	BEE MION	ILLONITA	G DATA	SHEET Dea	1 2063			
Project:	#: 07040	2-St1			Client: EkI						
Sampler					e: 4/6/07						
Well I.D	.: PPbw	-12			Well Diameter: (2) 3 4 6 8						
Total W	ell Depth:	62.40		Depth to	Depth to Water 54.30						
Depth to	Free Proc	luct:					eet):				
Reference		PVC	Grade		Thickness of Free Product (feet): Flow Cell Type: YSI 556						
Purge Meth Sampling M	Method:	2" Grund Dedicated	_		Peristaltic Pump Bladder Pump New Tubing Other						
Pump Depth:											
Time	Temp.	рН	Cond. (mS or AS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals) or mL)	DTW			
1157	20,84	7.21	985	351	5.38	11.2	55	54.80			
1207	20,78	7.14	981	175	5.30	6,8	60	11			
1217	20,92	7.12	979	153	5,21	4.8	65	iş.			
1227	20.99	7, 19	978	125	5,21	-1.7	70	1 (
1238	21.08	7.16	975	93	5,18	-5.9	75	//			
· <u></u>	pur	71 5+	opped	to swite	h to b						
1300	purge	Ctart		alder priv							
1305	21.46	7. 22	974	511	5.15	-10.0	2,5,00	54.02			
1310	21.42	7.09	975	300	4.69	-13.4	5,000				
315	21.40	7.08	972	208	5,22	-16.1	7,500	11			
1320	2144	7.09	973	125	5.33	-15.7	10,000	54.00			
Did well d	lewater?	Yes]	No		Amount a	ctually e	vacuated:				
ampling	ampling Time: Sampling Date:										
ample I.D.: Laboratory:											
nalyzed for: TPH-6 BTEX MTBE TPH-D Other:											
quipment	quipment Blank I.D.: Other: Duplicate I.D.:										

WILOW WELLIMONITORING DATA SHEET page 3 of 3 Project #: 070102 -41 Client: ELL Sampler: 27 Start Date: 107 Well I.D .: PP6W-12 Well Diameter: (2) 6 Depth to Water 54.30 Total Well Depth: 62.40 Depth to Free Product: Thickness of Free Product (feet): Referenced to: Flow Cell Type: 4SI 556 PVC Grade Purge Method: Bladder Pump 2" Grundfos Pump Peristaltic Pump **Dedicated Tubing** Sampling Method: New Tubing Other 259' 500 11 min Flow Rate: Pump Depth: Temp. Cond. **Turbidity** D.O. ORP Water Removed (C) or °F) (mS or (is) Time pН (NTUs) (mg/L)(mV) (gals. or thL) DTW 913 21.38 1325 7,13 -17.2 537 53.98 12,500 1330 21.37 7.13 913 61 -19.7 9.37 15,000 1335 973 43 5.37 u 21.35 7.12 +.81-17 500 Did well dewater? No. Amount actually evacuated: Sampling Time: 1340 Sampling Date: 4/6/07 Laboratory: Sample I.D.: PPbw-12 ralscience Analyzed for: TPH-G **BTEX** Other SCP SOW MTBE TPH-D Equipment Blank I.D.: Duplicate I.D.: DUP-S Time

	·	<u> </u>			TITIKIN	G DATA	SHEET	PAGE	105		
Project	#: 070407	2-571		Client: EKI							
Sample				Start Date	Start Date: 4-01-07						
Well I.I	D.: PPGW1	1 to			Well Diameter: (2) 3 4 6 8						
1		/	- (its that all		Depth to Water 44.35						
i .	Free Proc		1 7 W H glassa	1	Thickness of Free Product (feet):						
Reference		PVC	G(ad)	*	Flow Cell Type: YSL 556						
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate:				Peristaltic Pump New Cubing Other Pump Depth:							
						T		<u> </u>			
Time	Temp.	pН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed	DTW			
1307	-Begg	- Pur	w/BAI	Dump 50	1-024	6 surg	ed w/pino.				
1314	22.74	7.78	2/89	71000	4.39	34.7	5	44,80	ic.		
1323	22.81	7.71	1671	71000	3.99	9.1	10	44.81	** 5∪		
1330	27.56	7.62	1759	71000	5.37	20,4	15	44.86	ja.		
1337	22.55	7.58	1644	71000	5.22	20.3	70	45.00	10		
1344	22.49	7.59	1642	71000	5.01	14.5	25	45.01	1		
1351	22.26	7.56	1721	71000	5.51	16,4	30	45.01	1		
1358	2223	7,52	1777	754	5.75	Z2.0	35	45.01	pu		
1404	22,48	7.62	1708	71000	6.01	26.0	40	45.03	-lo≈		
1410	22.22	7,54	1763	71000	6,12	79.8	45	4503	┨ `		
1417	22.21	7.51	1792	472	5.76	32,4	50	45,01			
oid well d	lewater?	Yes	No	L	Amount a	ctually ev		, , , , , , , , , , , , , , , , , , ,	1		
ampling	Time:				Sampling Date:						
ample I.I	D.:				Laboratory:						
nalyzed	for:	трн-д і	STEX MTBE								
quipment	juipment Blank I.D.: @ Duplicate I.D.:										

WEN DEVEND MENT

MEZOCZ Project #: 0 70402 - 571 Client: Start Date: 4-17-07 Sampler: M Well Diameter: 6 Well I.D.: PPGW150 3 4 8 Depth to Water 44.35 Total Well Depth: 57.07 Depth to Free Product: Thickness of Free Product (feet): Flow Cell Type: Referenced to: PVC Glade Bladder Pump Peristaltic Pump 2" Grundfos Pump Purge Method: Other New Tubing Sampling Method: **Dedicated Tubing** Pump Depth: Flow Rate: Temp. Cond. D.O. ORP **Turbidity** Water Removed (c) or F) (mS or 🥵) (mV) (NTUs) (mg/L) (gais. or mL) DTW Time pН 45,02 5.85 691 1424 1786 32.0 45.02 7,52 22.12 1795 1431 45.01 108 602 2201 32.*5* cete A 51" 4 500-4mh Duno 5,60 239 71007 1819 7,50 6.02 22,44 7,50 1842 6.09 7500 mL 515 5.99 22,37 7.51 1823 107 760 0.000 -1 1520 56 25,2 12,500 -L 22.37 1841 5,98 7.52 15,000. 1525 37 6.06 24.7 856 Did well dewater? Amount actually evacuated: Yes No Sampling Date: Sampling Time: Sample I.D.: Laboratory: Analyzed for: MTBE Other: TPH-G BTEX TPH-D DUP8 Equipment Blank I.D.: Duplicate I.D.; Time QCEBFITHEY-8

		TOW	FLOW W.	אסזאן ממה	TTUKIN	G DATA	SHEET	TAGE 30f			
Project 7	4 : 070402	J-STI		Client: EKT							
Sampler				Start Date: 4-11-07							
Well I.D	.: PPGW	Ban		Well Diameter: ② 3 4 6 8							
1	ell Depth:	%		1	Depth to Water 44,35						
Depth to	Free Prod	uct:			Thickness of Free Product (feet):						
Reference	ed to:	PVC	G(જ ી તે)	Flow Cell	Type:	YSI 5	56				
Purge Meth Sampling N Flow Rate:	Method:	2" Grunds Dedicated	•		Peristaltic Pump New Tabing Other Pump Depth:						
Time	Temp.	pН	Cond. (mS or μ S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or thi)	DTW			
1530	22,37	7.52	1875	35	6,01	23.6	17.500	44,51			
1535	2234	7.52	1891	24	6.05	23,4	20,000	44.51			
						1	,				
							TD:57	115			
				····							
				·							
Did well o	lewater?	Yes (No.		Amount a	ctually e	vacuated:				
Sampling	Time: \	540			Sampling	Date: 4	-11-07				
ample I.I	D.: PPGh	15°			Laborator		cience	· · · · · · · · · · · · · · · · · · ·			
nalyzed	for:	TPH-G	втех мтві								
quipmen	t Blank I.L		@ Time	Duplicate I.D.: DUPB e 1545							
	7	acebriller.	-8 61339	ξ							

		2011 1	DOW WI	DE MION	I OXXII C	DIXXII		<u> </u>			
Project #: 370407 ST1				Client: EKI							
Sampler:	CM			Start Date: 4-12-07							
Well I.D.	: PPGWI	\		Well Diameter: ② 3 4 6 8							
	ll Depth:			Depth to V	Depth to Water 53.77						
	Free Produ				Thickness of Free Product (feet):						
Reference		PVC	Grade	Flow Cell	Туре:	YSI S	556				
Purge Metho Sampling M		2" Grundf Dedicated	Tubing	Peristaltic Pump New Tubing Other Pump Depth: ~59.5							
Time	Temp.	pН	Cond. (mS or (S)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or ml)	DTW			
1)805			Was mills	lodder pu			5	27.11			
0810	20.65	7.10	1013	57	6.79	700,4	2500	53.79			
0315	20:77	7.13	1015	61	6.11	189.7	5000	53,80			
0820	20.69	7.13	1013	48	6,42	179.5	7500	53.80			
0825	20.87	7.12	1012	49	6.73	171.4	10,000	53-80			
0830	20.82	7.10	1013	64	6.89	165.6	12,500	53.80			
0835	20,92	7.14	1008	47	6.63	156.1	15,000	53.80			
0840	20,99	7.13	1010	48	6.52	1482	17.500	53.80			
0845	70.97	7.15	1012	39	6.69	1429	Z0,000	53.80			
		1	1.0		1 1			*			
	Dan	ole	Vax5	buitted	toL	do					
Did well		\	(No)	Amount actually evacuated: 70,000 mL							
Sampling	Time: ()	848		Sampling Date: 4-12-07							
Sample I.	D.: PPGW		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Laboratory: (a) shake							
Analyzed		TPH-G	BTEX MTI	(1- ^'							
Equipmer	nt Blank I.	D.:	@ Time	Duplicate I.D.:							

- WELL DEVISION PMENT :=

					II Older	DAIA	SHEET			
Project #: 0'70402 - ST				Client: E	Client: EKI					
Sampler:				Start Date: 4 102 - 07						
Well I.D	: PPGU	XI		Well Dian	Well Diameter: ② 3 4 6 8					
1	ell Depth:	<i></i>	/	Depth to V	Depth to Water 44,40					
Depth to	Free Prod	luct:		Thickness	Thickness of Free Product (feet):					
Referenc	ed to:	PVC	Grade	Flow Cell	Туре:	Y575	56			
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing				Peristaltic Pump New Tubing Other						
Flow Rate:		14mn		T	Pump Dept	h: <u>\$_5</u> (J.5			
Time	Temp.	pН	Cond. (mS or (13)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mal)	DTW		
0918	- Beg	an Purg	e w/ Ha	dder purp	sete a	50.51				
0923	21.82	7.55	1716	337	3.73	49.3	2500	44.46		
0928	21.85	7.56	1744	148	3.89	38.8	5000	44.43		
0933	21.96	7.55	1766	29	4.56	35.8	7500	44.45		
0938	21.85	7.54	1775	21	4.94	346	10,000	44.45		
0943	21.88	7.53	1776	14	5.11	34.9	12,500	44.45		
0948	21.87	7.51	1773		5.25	33.9	15,000	44.45		
0953	21.83	7.50	1769	12	5.38	33.5	17,500	44.45		
0958	Z1.81	7.50	1772	8	5.45	32.7	20,000	44.45		
1003	21.84	7,49	1769	7	5,55	33.1	22,500	44.45		
	-5A1	MLE	NOT \$	at fundus	d to	اطما				
Did well d	ewater?	Yes (No)		Amount a		vacuated: 22	2.500		
Sampling '	Time: \(205		1	Sampling Date: 4-17-07					
Sample I.D.: PPGW13 Laboratory: Colsinere										
Analyzed for: TPH-G BTEX MTBE TPH-D Other: VOC										
quipment Blank I.D.: @ Duplicate I.D.:										

- WEN DEVELOP MENT

		TOWI		LLMON		•	SHEET	PAGE 10F				
Project #	: 070407	6(1		Client: EKI								
Sampler:				Start Date: 4-42-07								
	: PP6W	1			Well Diameter: (2) 3 4 6 8							
Total We		60.78		Depth to V	Depth to Water 47.65							
Depth to	Free Prod	,	4-2	Thickness	Thickness of Free Product (feet):							
Reference		PVC	G(ade	Flow Cell	Type:	Y5I '	556					
Sampling M	Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate: 2500 July				Peristaltic Pump New Juging Other Pump Depth: \$\times 5 4							
Time	Temp.	pH	Cond. (mS or μ \$)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW				
1035	Bego	n Duge	w/bladd	er lung	set@ =	-54'-						
1040	21.16	7.24	1027	71000	5.80	50.3	2500	47.71				
1045	21,19	7,23	1028	923	5,53	579	5000	47.71				
1050	21.26	7.22	1079	519	5.70	63.9	7500	47.71				
1055	21.26	7.23	1024	315	5.81	66.0	10,000	47,71				
1100	21.30	7.22	1030	220	5.72	69,4	12.500	47.71				
1105	21.32	7.22	1029	201	5.61	71.4	15,008	47:70				
1110	21,40	7.23	1030	148	5.73	76.2	17.500	47.70				
1115	21.34	7.24	1027	155	5.79	76.0	20,000	47.70				
1120	21.38	7.24	1030	103	6.02	77.2	22,500	47.70				
1125	21,34	7,24	1030	105	6.19	77.0	25,000	47.70				
Did well	dewater?	Yes	No		Amount a	octually e	vacuated:					
Sampling	Time:				Sampling	Date:						
Sample I.	D.:			Laboratory:								
Analyzed	for:	TPH-G	BTEX MT	ве трн-d		Other:						
Equipmen	nt Blank I.	D.:	@ Time	Duplicate I.D.:								

- WEU DEVENDMENT-

		40 W		ELL MON	LTODIN(G DATA	SHEET	PAGE Z			
Project #	t: 0704	02-57		Client: EKI							
Sampler	: Cm			Start Date: 4-07-07							
Well I.D	: PPGL	17		Well Diameter: 2 3 4 6 8							
Total We	ell Depth:	60.70		Depth to Water 47.65							
Depth to	Free Prod	luct:		Thickness	Thickness of Free Product (feet):						
Referenc	ed to:	PVC	Grade	Flow Cell	Type:	YSI55	6				
Purge Meth Sampling M Flow Rate:		2" Grundi Dedicated	•		Peristaltic Pump New Tubing Pump Depth: 254						
Time	Temp.	рН	Cond. (mS or µS)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Water Removed (gals. or mL)	DTW			
1130	21,33	7,24	1029	78	6.35	76.8	27,500	47.70			
1135	21.37	7.24	1029	74	6,19	77.1	30,000	47.70			
1140	21.35	7.23	1038	(3	6.25	77.1	32,500	47.70			
	C,A	m0/0	Not	1 1		1					
		70			a 10	رون ست					
Did well o	lewater?	Yes	(vo)		Amount a	ctually ev	vacuated: 3	7 500 L			
Sampling	Time: \				Sampling			<u> </u>			
	D.: PPGW				Laborator	0.1					
Analyzed			BTEX MTB	100							
Equipmen	t Blank I.I	D.:	@ Time		·)()P9 a171				

ATTACHMENT C

Analytical Laboratory Reports for Grab Groundwater Samples (Total Chromium, Hexavalent Chromium, and 1,4-Dioxane)